首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 310 毫秒
1.
A Sm0.5Sr0.5CoO3−δ (SSC)-BaZr0.1Ce0.7Y0.2O3−δ (BZCY) composite cathode with multiscale porous structure was successfully fabricated through infiltration for proton-conducting solid oxide fuel cells (SOFCs). The multiscale porous SSC catalyst was coated on the BZCY cathode backbones. Single cells with such composite cathode demonstrated peak power densities of 0.289, 0.383, and 0.491 W cm−2 at 600, 650, 700 °C, respectively. Cell polarization resistances were found to be as low as 0.388, 0.162, and 0.064 Ω cm2 at 600, 650 and 700 °C, respectively. Compared with the infiltrated multiscale porous cathode, cells with screen-printed SSC-BZCY composite cathode showed much higher polarization resistance of 0.912 Ω cm2 at 600 °C. This work has demonstrated a promising approach in fabricating high performance proton-conducting SOFCs.  相似文献   

2.
Low temperature anode-supported solid oxide fuel cells with thin films of samarium-doped ceria (SDC) as electrolytes, graded porous Ni-SDC anodes and composite La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-SDC cathodes are fabricated and tested with both hydrogen and methanol fuels. Power densities achieved with hydrogen are between 0.56 W cm−2 at 500 °C and 1.09 W cm−2 at 600 °C, and with methanol between 0.26 W cm−2 at 500 °C and 0.82 W cm−2 at 600 °C. The difference in the cell performance can be attributed to variation in the interfacial polarization resistance due to different fuel oxidation kinetics, e.g., 0.21 Ω cm2 for methanol versus 0.10 Ω cm2 for hydrogen at 600 °C. Further analysis suggests that the leakage current densities as high as 0.80 A cm−2 at 600 °C and 0.11 A cm−2 at 500 °C, resulting from the mixed electronic and ionic conductivity in the SDC electrolyte and thus reducing the fuel efficiency, can nonetheless help remove any carbon deposit and thereby ensure stable and coking-free operation of low temperature SOFCs in methanol fuels.  相似文献   

3.
Coplanar single-chamber micro solid oxide fuel cells (SC-μSOFCs) with curvilinear microelectrode configurations of arbitrarily complex two-dimensional geometry were fabricated by a direct-write microfabrication technique using conventional fuel cell materials. The electrochemical performance of two SC-μSOFCs with different electrode shapes, but comparable electrode and inter-electrode dimensions, was characterized in a methane–air mixture at 700 °C. Both cells exhibited stable open circuit voltage and peak power density of 0.9 V and 2.3 mW cm−2, respectively, indicating that electrode shape did not have a significant influence on the performance of these fuel cells.  相似文献   

4.
La1−xSrxMnO3 (LSM) has been widely developed as the cathode material for high-temperature solid oxide fuel cells (SOFCs) due to its chemical and mechanical compatibilities with the electrolyte materials. However, its application to low-temperature SOFCs is limited since its electrochemical activity decreases substantially when the temperature is reduced. In this work, low-temperature SOFCs based on LSM cathodes are developed by coating nanoscale samaria-doped ceria (SDC) onto the porous electrodes to significantly increase the electrode activity of both cathodes and anodes. A peak power density of 0.46 W cm−2 and area specific interfacial polarization resistance of 0.36 Ω cm2 are achieved at 600 °C for single cells consisting of Ni-SDC anodes, LSM cathodes, and SDC electrolytes. The cell performances are comparable with those obtained with cobalt-based cathodes such as Sm0.5Sr0.5CoO3, and therefore encouraging in the development of low-temperature SOFCs with high reliability and durability.  相似文献   

5.
Anode-supported planar solid oxide fuel cells (SOFC) were successfully fabricated by a single step co-firing process. The cells comprised of a Ni + yttria-stabilized zirconia (YSZ) anode, a YSZ or scandia-stabilized zirconia (ScSZ) electrolyte, a (La0.85Ca0.15)0.97MnO3 (LCM) + YSZ cathode active layer, and an LCM cathode current collector layer. The fabrication process involved tape casting of the anode, screen printing of the electrolyte and the cathode, and single step co-firing of the green-state cells in the temperature range of 1300–1330 °C for 2 h. Cells were tested in the temperature range of 700–800 °C with humidified hydrogen as fuel and air as oxidant. Cell test results and polarization modeling showed that the polarization losses were dominated by the ohmic loss associated with the electrodes and the activation polarization of the cathode, and that the ohmic loss due to the ionic resistance of the electrolyte and the activation polarization of the anode were relatively insignificant. Ohmic resistance associated with the electrode was lowered by improving the electrical contact between the electrode and the current collector. Activation polarization of the cathode was reduced by the improvement of the microstructure of the cathode active layer and lowering the cell sintering temperature. The cell performance was further improved by increasing the porosity in the anode. As a result, the maximum power density of 1.5 W cm−2 was achieved at 800 °C with humidified hydrogen and air.  相似文献   

6.
The layered perovskite PrBa0.5Sr0.5Co2O5+δ (PBSC) was investigated as a cathode material for a solid oxide fuel cell using an oxide proton conductor based on BaZr0.1Ce0.7Y0.2O3−δ (BZCY). The sintering conditions for the PBSC-BZCY composite cathode were optimized, resulting in the lowest area-specific resistance and apparent activation energy obtained with the cathode sintered at 1200 °C for 2 h. The maximum power densities of the PBSC-BZCY/BZCY/NiO-BZCY cell were 0.179, 0.274, 0.395, and 0.522 W cm−2 at 550, 600, 650, and 700 °C, respectively with a 15 μm thick electrolyte. A relatively low cell interfacial polarization resistance of 0.132 Ω cm2 at 700 °C indicated that the PBSC-BZCY could be a good cathode candidate for intermediate temperature SOFCs with BZCY electrolyte.  相似文献   

7.
To improve the performance of anode-supported solid oxide fuel cells (SOFCs), various types of single cells are manufactured using a thin-film electrolyte of Yttria stabilized zirconia (YSZ) and an anode functional layer composed of a NiO–YSZ nano-composite powder. Microstructural/electrochemical analyses are conducted. Single-cell performances are highly dependent on electrolyte thickness, to the degree that the maximum power density increases from 0.74 to 1.12 W cm−2 according to a decrease in electrolyte thickness from 10.5 to 6.5 μm at 800 °C. The anode functional layer reduced the polarization resistance of a single cell from 1.07 to 0.48 Ω cm2 at 800 °C. This is attributed to the provision by the anode layer of a highly reactive and uniform electrode microstructure. It is concluded that optimization of the thickness and homogeneity of component microstructure improves single-cell performances.  相似文献   

8.
Performance of solid oxide fuel cells (SOFCs) depends critically on the composition and microstructure of the electrodes. It is fabricated a dense yttria-stabilized zirconia (YSZ) electrolyte layer sandwiched between two porous YSZ layers at low temperature. The advantages of this structure include excellent structural stability and unique flexibility for evaluation of new electrode materials for SOFC applications, which would be difficult or impossible to be evaluated using conventional cell fabrication techniques because of incompatibility with YSZ under processing conditions. The porosity of porous YSZ increases from 65.8% to 68.6% as the firing temperature decreased from 1350 to 1200 °C. The open cell voltages of the cells based on the tri-layers of YSZ, co-fired using a two-step sintering at 1200 °C, are above 1.0 V at 700-800 °C, and the peak power densities of cells infiltrated LSCF and Pd-SDC electrodes are about 525, 733, and 935 mW cm−2 at 700, 750, and 800 °C, respectively.  相似文献   

9.
To reduce the cathode–electrolyte interfacial polarization resistance of low-temperature solid oxide fuel cells (SOFCs), a nanostructured porous thin cathode consisting of Sm0.5Sr0.5CoO3 (SSC) and Ce0.8Sm0.2O1.9 (SDC) was fabricated on an anode-supported electrolyte film using spin-coating technique. A suspension with nanosized cathode materials, volatilizable solvents and a soluble pore former was developed. The results indicated that the cell with the nanostructured porous thin cathode sintered at 950 °C showed relatively high maximum power density of 212 mW cm−2 at 500 °C and 114 mW cm−2 at 450 °C, and low interfacial polarization resistance of 0.79 Ω cm2 at 500 °C and 2.81 Ω cm2 at 450 °C. Hence, the nanostructured porous thin cathode is expected to be a promising cathode for low-temperature SOFCs.  相似文献   

10.
Metal-supported solid oxide fuel cells (SOFCs) with thin YSZ electrolyte films and infiltrated Ni and LSM catalysts are operated in the temperature range 650–750 °C. A five-layer structure consisting of porous metal-support/porous YSZ interlayer/dense YSZ electrolyte film/porous YSZ interlayer/porous metal current collector is prepared at 1300 °C in reducing atmosphere. This cell structure is then sealed and joined to a cell housing/gas manifold using a commercially available braze. Finally, the porous YSZ interlayers are infiltrated with Ni and LSM catalyst precursor solutions at low temperature prior to cell testing. Infiltrating the catalysts after the high temperature sintering and brazing steps avoids undesirable decomposition of LSM, Ni coarsening, and interdiffusion between Ni catalyst and FeCr in the support. Maximum power densities of 233 and 332 mW cm−2 were achieved at 650 and 700 °C, respectively, with air as oxidant. With pure oxygen as oxidant, power densities of 726, 993, and >1300 mW cm−2 were achieved at 0.7 V at 650, 700, and 750 °C, respectively.  相似文献   

11.
In order to develop a simple and cost-effective route to fabricate proton-conductor intermediate-temperature SOFCs, a dense BaZr0.1Ce0.7Y0.2O3−δ (BZCY) electrolyte was fabricated on a porous anode by in situ drop-coating. The PrBaCuFeO5+δ (PBCF) composite oxide with layered perovskite structure was synthesized by auto ignition process and examined as a novel cathode for proton-conductor IT-SOFCs. The single cell, consisting of PBCF/BZCY/NiO-BZCY structure, was assembled and tested from 600 to 700 °C with humidified hydrogen (∼3% H2O) as the fuel and the static air as the oxidant. An open-circuit potential of 1.01 V and a maximum power density of 445 mW cm−2 at 700 °C were obtained for the single cell. A relatively low interfacial polarization resistance of 0.15 Ω cm2 at 700 °C indicated that the PBCF is a promising cathode for proton-conductor IT-SOFCs.  相似文献   

12.
This study explored CO as a primary fuel in anode-supported solid oxide fuel cells (SOFCs) of both tubular and planar geometries. Tubular single cells with active areas of 24 cm2 generated power up to 16 W. Open circuit voltages for various CO/CO2 mixture compositions agreed well with the expected values. In flowing dry CO, power densities up to 0.67 W cm−2 were achieved at 1 A cm−2 and 850 °C. This performance compared well with 0.74 W cm−2 measured for pure H2 in the same cell and under the same operating conditions. Performance stability of tubular cells was investigated by long-term testing in flowing CO during which no carbon deposition was observed. At a constant current of 9.96 A (or, 0.414 A cm−2) power output remained unchanged over 375 h of continuous operation at 850 °C. In addition, a 50-cell planar SOFC stack was operated at 800 °C on 95% CO (balance CO2), which generated 1176 W of total power at a power density of 224 mW cm−2. The results demonstrate that CO is a viable primary fuel for SOFCs.  相似文献   

13.
A new anode-supported SOFC material system Ni-BZCYYb|BZCYYb|PBFO is investigated, in which a cobalt-free layered perovskite oxide, PrBaFe2O5+δ (PBFO), is synthesized and employed as a novel cathode while the synthesized BZCYYb is used as an electrolyte. The cell is fabricated by a simple dry-pressing/co-sintering process. The cell is tested and characterized under intermediate temperature range from 600 to 700 °C with humified H2 (∼3% H2O) as fuel, ambient air as oxidant. The results show that the open-circuit potential of 1.006 V and maximal power density of 452 mW cm−2 are achieved at 700 °C. The polarization resistance of the electrodes is 0.18 Ω cm2 at 700 °C. Compared to BaZr0.1Ce0.7Y0.1O3−δ, the conductivity of co-doped barium zirconate-cerate BZCYYb is significantly improved. The ohmic resistance of single cell is 0.37 Ω cm2 at 700 °C. The results indicate that the developed Ni-BZCYYb|BZCYYb|PBFO cell is a promising functional material system for SOFCs.  相似文献   

14.
Operation of cone-shaped anode-supported segmented-in-series solid oxide fuel cell (SIS-SOFC) stack directly on methane is studied. A cone-shaped solid oxide fuel cell stack is assembled by connecting 11 cone-shaped anode-supported single cells in series. The 11-cell-stack provides a maximum power output of about 8 W (421.4 mW cm−2 calculated using active cathode area) at 800 °C and 6 W (310.8 mW cm−2) at 700 °C, when operated with humidified methane fuel. The maximum volumetric power density of the stack is 0.9 W cm−3 at 800 °C. Good stability is observed during 10 periods of thermal cycling test. SEM-EDX measurements are taken for analyzing the microstructures and the coking degrees.  相似文献   

15.
Bi0.5Sr0.5MnO3 (BSM), a manganite-based perovskite, has been investigated as a new cathode material for intermediate-temperature solid oxide fuel cells (SOFCs). The average thermal-expansion coefficient of BSM is 14 × 10−6 K−1, close to that of the typical electrolyte material. Its electrical conductivity is 82-200 S cm−1 over the temperature range of 600-800 °C, and the oxygen ionic conductivity is about 2.0 × 10−4 S cm−1 at 800 °C. Although the cathodic polarization behavior of BSM is similar to that of lanthanum strontium manganite (LSM), the interfacial polarization resistance of BSM is substantially lower than that of LSM. The cathode polarization resistance of BSM is only 0.4 Ω cm2 at 700 °C and it decreases to 0.17 Ω cm2 when SDC is added to form a BSM-SDC composite cathode. Peak power densities of single cells using a pure BSM cathode and a BSM-SDC composite electrode are 277 and 349 mW cm2 at 600 °C, respectively, which are much higher than those obtained with LSM-based cathode. The high electrochemical performance indicates that BSM can be a promising cathode material for intermediate-temperature SOFCs.  相似文献   

16.
In the past decade the scientific community has showed considerable interest in the development of implantable medical devices such as muscle stimulators, neuroprosthetic devices, and biosensors. Those devices have low power requirements and can potentially be operated through fuel cells using reactants present in the body such as glucose and oxygen instead of non-rechargeable lithium batteries. In this paper, we present a thin, enzyme-free fuel cell with high current density and good stability at a current density of 10 μA cm−2. A non-enzymatic approach is preferred because of higher long term stability. The fuel cell uses a stacked electrode design in order to achieve glucose and oxygen separation. An important characteristic of the fuel cell is that it has no membrane separating the electrodes, which results in low ohmic losses and small fuel cell volume. In addition, it uses a porous carbon paper support for the anodic catalyst layer which reduces the amount of platinum or other noble metal catalysts required for fabricating high surface area electrodes with good reactivity. The peak power output of the fuel cell is approximately 2 μW cm−2 and has a sustainable power density of 1.5 μW cm−2 at 10 μA cm−2. An analysis on the effects of electrode thickness and inter electrode gap on the maximum power output of the fuel cell is also performed.  相似文献   

17.
This study discusses the fabrication and electrochemical performance of micro-tubular solid oxide fuel cells (SOFCs) with an electrolyte consisting a single-grain-thick yttria stabilized zirconia (YSZ) layer. It is found that a uniform coating of an electrolyte slurry and controlled shrinkage of the supported tube leads to a dense, crack-free, single-grain-thick (less than 1 μm) electrolyte on a porous anode tube. The SOFC has a power density of 0.39 W cm−2 at an operating temperature as low as 600 °C, with YSZ and nickel/YSZ for the electrolyte and anode, respectively. An examination is made of the effect of hydrogen fuel flow rate and shown that a higher flow rate leads to better cell performance. Hence a YSZ cell can be used for low-temperature SOFC systems below 600 °C, simply by optimizing the cell structure and operating conditions.  相似文献   

18.
In an attempt to achieve desirable cell performance, the effects of La0.7Sr0.3MnO3 (LSM)-based cathodes on the anode-supported solid oxide fuel cells (SOFCs) were investigated in the present study. Three types of cathodes were fabricated on the anode-supported yttria-stabilized zirconia (YSZ) thin films to constitute several single cells, i.e., pure LSM cathode, LSM/YSZ composite by solid mixing, LSM/Sm0.2Ce0.8O1.9 (SDC) composite by the ion-impregnation process. Among the three single cells, the highest cell output performance 1.25 W cm−2 at 800 °C, was achieved by the cell using LSM/SDC cathode when the cathode was exposed to the stationary air. Whereas, the most considerable cell performance of 2.32 W cm−2 was derived from the cell with LSM/YSZ cathode, using 100 ml min−1 oxygen flow as the oxidant. At reduced temperatures down to 700 °C, the LSM/SDC cathode was the most suitable cathode for zirconia-based electrolyte SOFC in the present study. The variation in the cell performances was attributed to the mutual effects between the gas diffusing rate and three-phase boundary length of the cathode.  相似文献   

19.
To bridge the sintering temperature gap between the electrolyte and the cathode, low-temperature anode supported solid oxide fuel cells (SOFCs) with various thickness of electrolyte interlayer were fabricated and investigated. The porous thin interlayer was dip-coated and fired onto the dense Ce0.9Gd0.1O1.95 (GDC) electrolyte surface. With humidified hydrogen as the fuel and air as the oxidant, the single cell with a 0.15 μm interlayer achieved the maximum power density (MPD) of 0.9 W cm−2 at 600 °C. The higher open circuit voltages (OCVs) (>0.9 V at 600 °C) were obtained in this study. The impedance results showed that the porous interlayer not only improved the interfacial contact between electrolyte and cathode, but also increased electrochemically active surface area. The cathode/electrolyte polarization resistance exhibited minimum when a 0.15 μm interlayer was added. The apparent activation energies derived from the Arrhenius plots of interfacial polarization resistances were about the same when the added interlayer was thinner, which indicated that the reaction mechanism did not change. However, the corresponding values were higher as the thick interlayer was introduced, which could be ascribed to the retarded oxygen ion transfer in the added porous layer. The cell area specific resistance (ASR) obtained by linear fitting IV plot in the region of 0.6–0.7 V was higher than the ohmic resistance tested at OCV condition, and it was potentially attributed to the increased oxygen partial pressure at the anode as well as the contribution from polarization resistance, i.e. polarization of mass transport.  相似文献   

20.
In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 μm SSZ and 4 μm SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm−2 at 650 °C and 0.85 W cm−2 at 700 °C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (Rel) and electrode polarization resistance (Rp,a+c) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O2−x during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the Rel value (0.32 Ω cm2) at 650 °C, which is almost one order of magnitude higher than the calculated value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号