首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new gate current model which considers the hot-electron induced oxide damage in n-MOSFET's was developed for the first time. The spatial distributions of oxide damage, including the interface state (Nit ) and oxide trapped charge (Qox) were characterized by using an improved gated-diode current measurement technique. A numerical model feasible for accurately simulating gate current degradation due to the stress generated Nit and Qox has thus been proposed. Furthermore, the individual contributions of Nit and Qox to the degradation of gate current can thus be calculated separately using these oxide damage. For devices stressed under maximum gate current biases, it was found that the interface state will degrade the gate current more seriously than that of the oxide trapped charge. In other words, the interface states will dominate the gate current degradation under IG,max. Good agreement of the simulated gate current has been achieved by comparing with the measured data for pre-stressed and post-stressed devices. Finally, the proposed degradation model is not only useful for predicting the gate current after the hot-electron stress, but also provides a monitor that is superior to substrate current for submicron device reliability applications, in particular for EPROM and flash EEPROM devices  相似文献   

2.
Previous studies showed that simultaneous determination of the interface states (Nit) and oxide-trapped charges (Qox) in the vicinity of the drain side in MOS devices was rather difficult. A new technique which allows a consistent characterization of the spatial distributions of both hot-carrier-induced Nit and Qox is presented. Submicron LDD n-MOS devices were tested and charge pumping measurements were performed. The spatial distributions of both Nit and Q ox have been justified by two-dimensional (2-D) device simulation of the I-V characteristics for devices before and after the stress. Comparison of the drain current characteristics between simulation and experiment shows very good agreement. Moreover, results show that fixed-oxide charge effect is less pronounced to the device degradation for the experimental LDD-type n-MOS devices  相似文献   

3.
A new charge-pumping method has been developed to characterize the hot-carrier induced local damage. By holding the rising and falling slopes of the gate pulse constant and then varying the high-level (VGH) and base-level (VGL) voltages, the lateral distribution of interface-states (Nit(x)) and oxide-trapped charges (Qox(x)) can be profiled. The experimental results show that during extracting Qox(x) after hot-carrier stress, a contradictory result occurs between the extraction methods by varing the high-level (VGH) and base-level (VGL) voltages. As a result, some modifications are made to eliminate the perturbation induced by the generated interface-states after hot-carrier stress for extracting Qox(x)  相似文献   

4.
A new and accurate technique that allows the simultaneous determination of the spatial distributions of both interface states (N it) and oxide charge (Qox) will be presented. The gated-diode current measurement in combination with the gate-induced drain leakage (GIDL) current were performed to monitor the generation of both Nit and Qox in n-MOSFET's. A special detrapping technique and simple calculations have been developed, from which the spatial distributions of both Nit and Qox under various bias stress conditions, such as the hot-electron stress (IG,max), IB,max, and hot-hole stresses, can be determined. The calculation of gated-diode current by incorporating the extracted profiles of Nit and Qox has been justified from numerical simulation. Results show very good agreement with the experimental results. The extracted interface damages for hot-electron and hot-hole stresses have very important applications for the study of hot-carrier reliability issues, in particular, on the design of flash EPROM, E2PROM cells since the above stress conditions, such as the IG,max and hot-hole stress, are the major operating conditions for device programming and erasing, respectively  相似文献   

5.
In this paper, we provide a methodology to evaluate the hot-carrier-induced reliability of flash memory cells after long-term program/erase cycles. First, the gated-diode measurement technique has been employed for determining the lateral distributions of interface state (Nit) and oxide trap charges (Qox) under both channel-hot electron (CHE) programming bias and source-side erase-bias stress conditions. A gate current model was then developed by including both the effects of Nit and Qox. Degradation of flash memory cell after P/E cycles due to the above oxide damage was studied by monitoring the gate current. For the cells during programming, the oxide damage near the drain will result in a programming time delay and we found that the interface state generation is the dominant mechanism. Furthermore, for the cells after long-term erase using source-side FN erase, the oxide trap charge will dominate the cell performance such as read disturb. In order to reduce the read-disturb, source bias should be kept as low as possible since the larger the applied source erasing bias, the worse the device reliability becomes  相似文献   

6.
The lateral distributions of interface-states (Nit) and oxide-trapped charges (Qox) generated by band-to-band tunneling (BTBT) induced hot-carrier stress are analyzed by the new charge-pumping method. It is shown that the interface-states and oxide-trapped charges should originate from different types of carriers due to the separation of the locations of their peak values. The further evidence of the measured distribution of the interface-states in the band-gap shows that the carriers travelling toward the gate edge would be the dominant carrier for the generation of interface-states while the carriers travelling away from the gate edge will generate oxide-trapped charges through the help of the vertical electric field. These results should be very useful for the reliability analysis of flash memories  相似文献   

7.
The quantitative relationship between field-effect mobility (μ FE) and grain-boundary trap-state density (Nt ) in hydrogenated polycrystalline-silicon (poly-Si) MOSFETs is investigated. The focus is on the field-effect mobility in MOSFETs with Nt 1×102 cm-2. It is found that reducing Nt to as low as 5×1011 cm-2 has a great impact on μFE. MOSFETs with the Nt of 4.2×1011 cm-2 show an electron mobility of 185 cm2/V-s, despite a mean grain size of 0.5 μm. The three principal factors that determine μFE, namely, the low-field mobility, the mobility degradation factor, and the trap-state density Nt are clarified  相似文献   

8.
Propagation of defects from the sub-spacer region to the gate-overlapped LDD region in NMOSFETs is modeled using measurements and 2-D device simulation. It is argued that the saturation of degradation is caused by the saturating nature of this degradation length, as opposed to decreasing lateral electric field maxima (Em) or increasing barrier height (φit) to defect creation. Two stage hot-carrier degradation was observed in our LDD NMOSFETs. The early mode (1000-3000 s) of the degradation is characterized by a sharp rate of degradation of the linear transconductance (gm), and a reduction in the substrate current (IB). In order to locate and quantify defects produced in this early mode degradation phase, we use the results of a combination of the floating gate technique and simultaneous measurements of the reverse (source and drain interchanged) saturation gm's. These results help us build a 2-D simulation framework involving trapped negative charges in the oxide in the drain-side gate-edge region, partly under the gate and partly in the spacer region. We then use 2-D simulation and other measurements such as linear and saturation current degradation, IB degradation, and charge pumping to confirm the location of the defects and help estimate their quantity. Simulation results also help us build an analytical model for defect propagation from the early mode to the late mode. The analytical model is seen to explain many features of the saturating nature of hot-carrier degradation  相似文献   

9.
Charge trap generation in LPCVD oxides under high field stressing   总被引:1,自引:0,他引:1  
The degradation of low pressure chemical vapor deposited (LPCVD) oxides, prepared using silane and tetra ethyl ortho silicate (TEOS) as the source, has been investigated under high field stressing. The LPCVD oxides exhibit enhanced conductivity for the Fowler-Nordheim tunneling current, which is modeled as an effective lowering of potential barrier at the injecting electrode. The charge to breakdown (Qbd) of LPCVD oxides depends on both the deposition chemistry and post deposition annealing condition. The change in interface-state density (ΔDit), flatband voltage (ΔVfb), and gate voltage (Δ|Vg|) during constant current stressing are studied to identify the degradation mechanism. We see a very good correlation between Qbd and Δ|Vg|, indicating that the degradation in LPCVD oxides is dominated by bulk trap generation and subsequent charge trapping. We present a detailed theoretical analysis to substantiate this  相似文献   

10.
For pt. I see ibid. vol.43, no.1, p.64-75, 1997. The effects of the high power amplifier (HPA) nonlinearities on the performance of the Eureka 147 DAB system are studied by computer simulation. The performance is determined for three types of HPA: a travelling wave tube amplifier (TWTA), a solid state power amplifier (SSPA) and a perfectly linearized amplifier (PLA). Two related performance criteria are used: (a) the degradation, resulting from HPA nonlinearities, in the Eb /N0 ratio required at the receiver to maintain a bit error rate of 10-4 and (b) the total power degradation. These degradations are measured as a function of the HPA output backoff (OBO). The effect, on the Eb/N0 degradation, of linearizing only the phase or only the amplitude transfer characteristic of the TWTA and the SSPA is also assessed. Correcting the phase distortion alone in both HPAs is found to reduce the Eb/N0 degradation by less than 0.5 dB. Linearization of the amplitude characteristic alone, on the other hand, can reduce the Eb/N0 degradation by several dBs at small OBO values (<2 dB). The optimum output backoff which minimizes the total power degradation is between 2 and 3 dB for both the TWTA and the SSPA in a terrestrial mobile channel and between 1 and 2 dB in an AWGN channel. The optimum output backoff for the PLA is 2 dB in the terrestrial channel and between 1 and 2 dB in the AWGN channel. At the optimal operation point, the power saved by linearizing the amplitude and phase characteristics of the TWTA or the SSPA is about 0.6 dB for the terrestrial mobile channel and 0.4 dB for the AWGN channel  相似文献   

11.
Degradation of analog device parameters such as drain conductance, gd, due to hot carrier injection has been modeled for NMOSFET's. In this modeling, mobility reduction caused by interface state generation by hot carrier injection and the gradual channel approximation were employed. It has been found that gd degradation can be calculated from linear region transconductance, gm, degradation which is usually monitored for hot carrier degradation of MOSFET's. The values of gd degradation calculated from gm degradation fit well to the measured values of gd degradation The dependence of the gd degradation lifetime on Leff has been also studied, this model also provides an explanation of the dependence on Leff. The model is then useful for lifetime predictions of analog circuits in which gd degradation is usually more important than gm degradation  相似文献   

12.
Effects of parasitic capacitance, external resistance, and local stress on the radio-frequency (RF) performance of the transistors fabricated by 65-nm CMOS technology have been investigated. The effect of parasitic capacitance, particularly Cgb, becomes significant due to the reduced spacing between the gate and the substrate contact (SC) in proportion to scaling down. Current drivability (Idsat) per unit width has been improved through introduction of mobility enhancement techniques. The influence of external resistance becomes more pronounced for large-dimensional RF transistors due to severe IR drop. Such improved current drivability and large external resistance is responsible for dc performance (gm) degradation and, eventually, cutoff frequency (fT) degradation. Local stress effects associated with silicon nitride capping layer and STI stress have been investigated. fT is largely affected by local stress change, i.e., gm degradation at minimal gate poly (GP) pitch and gate-to-active spacing, fT is dominated by increased parasitic capacitance (Cgb) with increasing GP pitch and gate-to-active spacing. Above 10% improvement in fT has been observed through layout optimization for Cgb reduction by increasing the transistor active-to-SC spacing.  相似文献   

13.
In this paper, the “erase” degradation in program/erase (P/E) cycling endurance of split-gate flash memory has been investigated. It is found that increasing the control-gate (CG) voltage (VCG) during erasing can slow down the “window closure” of cycling endurance since a higher VCG can “push” the FG potential into gradual part of IRead-out -VFG curve and in turn reduce the read-out current degradation. Moreover, the experimental results show that scaling down the gate oxide thickness under FG can effectively reduce the IRead-out degradation in the cycling endurance test  相似文献   

14.
In this paper, we describe a systematic study of the electrical properties of low-temperature-compatible p-channel polycrystalline-silicon thin-film transistors (poly-Si TFTs) using HfO2 and HfSiOx, high-k gate dielectrics. Because of their larger gate capacitance density, the TFTs containing the high-k gate dielectrics exhibited superior device performance in terms of higher Ion/Ioff current ratios, lower subthreshold swings (SSs), and lower threshold voltages (Vth), relative to conventional deposited-SiO2, albeit with slightly higher OFF-state currents. The TFTs incorporating HfSiOx, as the gate dielectric had ca. 1.73 times the mobility (muFE) relative to that of the deposited-SiO2 TFTs; in contrast, the HfO2 TFTs exhibited inferior mobility. We investigated the mechanism for the mobility degradation in these HfO2 TFTs. The immunity of the HfSiOx, TFTs was better than that of the HfO2 TFTs-in terms of their Vth shift, SS degradation, muFE degradation, and drive current deterioration-against negative bias temperature instability stressing. Thus, we believe that HfSiOx, rather than HfO2, is a potential candidate for use as a gate-dielectric material in future high-performance poly-Si TFTs.  相似文献   

15.
AC-stress-induced degradation of 1/f noise is investigated for n-MOSFETs with thermal oxide or nitrided oxide as gate dielectric, and the physical mechanisms involved are analyzed. It is found that the degradation of 1/f noise under AC stress is far more serious than that under DC stress. For an ac stress of VG=0~0.5 VD, generations of both interface states (ΔDit) and neutral electron traps (ΔNet) are responsible for the increase of 1/f noise, with the former being dominant. For another AC stress of V G=0~VD. a large increase of 1/f noise is observed for the thermal-oxide device, and is attributed to enhanced ΔNet and generation of another specie of electron traps, plus a small amount of ΔDit. Moreover, under the two types of AC stress conditions, much smaller degradation of 1/f noise is observed for the nitrided device due to considerably improved oxide/Si interface and near-interface oxide qualities associated with interfacial nitrogen incorporation  相似文献   

16.
By using the hydrogen/deuterium isotope effect, we propose a new technique to separate and quantify the effects of hot-carrier-induced interface trap creation and oxide charge trapping on the degradation in PMOSFETs. In addition to the well-known hot-electron-induced-punchthrough (HEIP) mechanism, we find that two additional mechanisms, namely, interface trap creation and hole trapping in the oxide, also play important roles in PMOSFET degradation. The degradation mechanisms are highly dependent on stress conditions. For low gate voltage Vgs stress, HEIP is found to dominate the shift of threshold voltage Vt. When Vgs increases to a moderate value, the Vt shift can be fully dominated by interface trap creation. Hole injection and trapping into the oxide occurs when Vgs is increased further to Vgs=Vds. For the first time, the effects of interface trap creation and oxide charge trapping on the Vt shift are quantified by the proposed technique  相似文献   

17.
New experimental and analytical results are presented which show that extrinsic and intrinsic base dopant compensation by hydrogen is responsible for large changes in the bipolar transistor parameters of emitter-base breakdown voltage (Vebo), forward collector current (Ic) and series base resistance (Rbx) when such transistors are operated under avalanche and inverted mode stress conditions. A new physical model has been developed to explain the observed changes in Vebo and Ic as a function of stress time, and the analytical results are shown to be well correlated with the experimental data. Lastly, the effects of degradation on transistor voltage gain bandwidth (fmax) and emitter coupled bipolar comparator delay (τdelay) are assessed and discussed in terms of circuit performance degradation  相似文献   

18.
Device degradation behaviors of typical-sized n-type metal-induced laterally crystallized polycrystalline silicon thin-film transistors were investigated in detail under two kinds of dc bias stresses: hot-carrier (HC) stress and self-heating (SH) stress. Under HC stress, device degradation is the consequence of HC induced defect generation locally at the drain side. Under a unified model that postulates, the establishment of a potential barrier at the drain side due to carrier transport near trap states, device degradation behavior such as asymmetric on current recovery and threshold voltage degradation can be understood. Under SH stress, a general degradation in subthreshold characteristic was observed. Device degradation is the consequence of deep state generation along the entire channel. Device degradation behaviors were compared in low Vd-stress and in high Vd-stress condition. Defect generation distribution along the channel appears to be different in two cases. In both cases of SH degradation, asymmetric on current recovery was observed. This observation, when in low Vd-stress condition, is tentatively explained by dehydrogenation (hydrogenation) effect at the drain (source) side during stress  相似文献   

19.
A new DC technique, the drain current-conductance method (DCCM), has been developed to extract the gate bias dependent effective channel mobility (μeff), and source and drain series resistance (R s and Rd) of drain-engineered MOSFET's. The extraction of μeff, Re, and Rd by DCCM is based on the DC measurements of drain current and conductance of a single device. The negligible difference between the measured and modeled (using the extracted parameters) linear drain current showed that the DCCM is accurate and effective for devices with different graded junction structures and channel lengths. Asymmetry between Rs and Rd for LDD p-MOSFET's was found to be more significant than for LATID n-MOSFET's. This asymmetry has invalidated many methods which utilized the assumptions of Rd=Rs for the extraction of device parameters. The DCCM was further applied to devices with nonuniform hot-carrier degradation. The μeff, Rs, and Rd of LATID n-MOSFET's degraded under different hot-carrier stress conditions were extracted. The increase in Rd is found to dominate the initial phase of hot-carrier degradation while the decrease in μeff intensifies as the stress duration increases. The extracted parameters have provided physical insight into the asymmetries of graded junctions and degradation mechanisms of hot-carrier stressed MOSFET's, The DCCM is especially useful for the extraction of SPICE parameters that are usable in circuit and reliability simulation  相似文献   

20.
Grounded-body (GB) core-logic/high-speed (HS) and input/output (I/O) silicon-on-insulator pMOSFETs from 65-nm technology are shown to degrade more than floating-body (FB) devices under negative bias temperature instability (NBTI) stress. However, in both cases, worst case degradation occurs when stressed under equal gate and drain voltages (Vg = Vd), whereby degradation is simultaneously induced by both NBTI and hot carrier injection (HCI) simultaneously ("concurrent HCI-NBTI"), the relative importance of each mechanism depending on the type of device and the bias level. The degradation of I/O pMOSFETs stressed under Vg = Vd at room temperature shows predominantly NBTI-like behavior at higher stress voltages, whereas it shows concurrent HCI-NBTI behavior at lower stress voltages. By contrast, the degradation of HS pMOSFETs stressed under Vg = Vd shows concurrent HCI-NBTI behavior over the entire stress bias range. In both cases, FB devices degrade more than GB devices for higher stress voltage values, but the FB effects weaken and the degradations become comparable for lower stress bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号