首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Critical assessment of the existing models for the desorption rate of hydrogen trapped in steel indicated that the desorption rate can be described by the kinetic formula dX/dt=A(1-X) exp (-E d /RT). Good fit of the formula has been found to the hydrogen released during thermal-desorption spectrometry (TDS) analysis from the coherent and incoherent TiC particles in 0.05C-0.22Ti-2.0Ni and 0.42C-0.30Ti steels. The activation energy (E d ) and the constant parameter A can be determined uniquely with high accuracy by a single spectrum simulation. The activation energy for hydrogen desorption from the incoherent TiC particle in the well-tempered 0.05C-0.22Ti-2.0Ni steel is 85.7 kJ/mol. In the 0.42C-0.30Ti steel, a higher activation energy of 116 kJ/mol was obtained for the coarse incoherent TiC when tempered at 650 °C and 700 °C. The activation energy decreased from 116 kJ/mol at 650 °C to 68 kJ/mol at 500 °C. The nanosized TiC coherent precipitates in the 0.42C-0.30Ti steel were found to have an activation energy ranging from 46 to 59 kJ/mol, depending on the tempering temperature. A low value of much less than 104 s−1 was obtained for the constant parameter A for most cases, which suggested that the retrapping of the released hydrogen is not important in the thermal-desorption analysis.  相似文献   

2.

Microstructural response and variations in strength and electrical conductivity of a Cu−20 at. pct Ni–6.7 at. pct Al alloy during isothermal aging at temperatures from 723 K to 1023 K (450 °C to 750 °C) were investigated to discuss the age-induced precipitation behavior and strengthening mechanism. At all aging temperatures, fine spherical γ′-Ni3Al particles were found to nucleate coherently with parent Cu grains by continuous precipitation and then grew gradually by Ostwald ripening. Domains with a high density of twins developed at grain boundaries during aging below 873 K (600 °C) followed by cellular components composed of fiber-shaped γ′-Ni3Al and Cu solid solution phases at the domain boundaries later. Both the domains and cellular components were suppressed at aging above 923 K (650 °C). The age-induced strengthening principally resulted from fine dispersion of γ′-Ni3Al coherent particles in the grains. The precipitation strengthening by the fine γ′-Ni3Al coherent particles exhibited a maximum at an aging temperature of 873 K (600 °C), resulting in excellent mechanical properties such as a high hardness of 340 ± 7 HV and an ultimate tensile strength of 980 ± 14 MPa, which are comparable to those of other commercial age-hardened Cu–Be, Cu–Ni–Si, and Cu–Ti alloys.

  相似文献   

3.
Reaction synthesis of Ni-Al-based particle composite coatings   总被引:1,自引:0,他引:1  
Electrodeposited metal matrix/metal particle composite (EMMC) coatings were produced with a nickel matrix and aluminum particles. By optimizing the process parameters, coatings were deposited with 20 vol pct aluminum particles. Coating morphology and composition were characterized using light optical microscopy (LOM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Differential thermal analysis (DTA) was employed to study reactive phase formation. The effect of heat treatment on coating phase formation was studied in the temperature range 415 °C to 1000 °C. Long-time exposure at low temperature results in the formation of several intermetallic phases at the Ni matrix/Al particle interfaces and concentrically around the original Al particles. Upon heating to the 500 °C to 600 °C range, the aluminum particles react with the nickel matrix to form NiAl islands within the Ni matrix. When exposed to higher temperatures (600 °C to 1000 °C), diffusional reaction between NiAl and nickel produces (γ′)Ni3Al. The final equilibrium microstructure consists of blocks of (γ′)Ni3Al in a γ(Ni) solid solution matrix, with small pores also present. Pore formation is explained based on local density changes during intermetallic phase formation, and microstructural development is discussed with reference to reaction synthesis of bulk nickel aluminides.  相似文献   

4.
The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb3Al-xTi-yCr) intermetallics is studied between 650 °C and 850 °C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 °C. Alloying with Cr improves the isothermal oxidation resistance between 650 °C and 850 °C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 °C to 850 °C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings.  相似文献   

5.

This study adopted mechanical milling to prepare Mg-based REMg11Ni (RE = Sm, Y) hydrogen storage alloys. The alloy structures were examined by X-ray diffraction and transmission electron microscopy. The isothermal hydrogenation thermodynamics and kinetics were determined by an automatic Sievert apparatus. The non-isothermal dehydrogenation performance of the alloys was tested by differential scanning calorimetry and thermogravimetry at different heating rates. The results showed a nanocrystalline and amorphous tendency for the alloys. The YMg11Ni alloy exhibited a larger hydrogen absorption capacity, faster hydriding rate, and lower temperature of onset hydrogen desorption than the SmMg11Ni alloy. The hydrogen desorption temperatures of the REMg11Ni (RE = Sm, Y) alloys were 557.6 K and 549.8 K (284.6 °C and 276.8 °C), respectively. The hydrogen desorption property of the RE = Y alloy was found superior to the RE = Sm alloy based on the time required to absorb 3 wt pct H2, i.e., the time needed by the RE = Y alloy was reduced to 1106, 456, 363, and 180 s, respectively, corresponding to the hydrogen desorption temperatures of 593 K, 613 K, 633 K, and 653 K (320 °C, 340 °C, 360 °C, and 380 °C), compared to 1488, 574, 390, and 192 s for the RE = Sm alloy under identical conditions. The dehydrogenation activation energies were 100.31 and 98.01 kJ/mol for the REMg11Ni (RE = Sm, Y) alloys, respectively, which agreed with those of the RE = Y alloy showing a superior hydrogen desorption property.

  相似文献   

6.
A copper-nickel alloy has been prepared from an aqueous solution of the nitrates of copper and nickel, through co-formation of their ultrafine mixed oxides, by heating around 650 K followed by reduction with hydrogen at a very low temperature (below 623 K). The effect of temperature (473 to 623 K) on the kinetics of the hydrogen reduction of the co-formed oxides of Ni and Cu has been studied. The activation energy of the reduction reaction has been calculated and found to be 35.8 kJ/mole. A mechanism for the kinetics of the process has been suggested. It has been possible to get high-purity Cu-Ni alloy powder (50 at. pct each) free of any detectable oxygen, from their co-formed oxides, by hydrogen reduction at 623 K in less than 20 minutes. Although the X-ray analysis of the co-formed oxides has shown separate peaks for CuO and NiO, the alloy powder has exhibited a single peak with a d spacing lying in between those of Cu and Ni. It is suggested that the alloying of the two metals has taken place during the H2 reduction of nanosized oxide particles of copper and nickel, prepared by the aforementioned chemical route. The alloy powder has been sintered at 1273 K. The density and hardness of the consolidated alloy have been measured and found to be close to the theoretical values. The alloy has also been subjected to cold reduction and annealing, in addition to metallograph examination and characterization by a scanning electron microscope (SEM), to confirm the homogeneity of the alloy.  相似文献   

7.
The isothermal section of the Sn-Cu-Ni system at 800 °C has been experimentally determined. There is no ternary compound. A solid solution with a very wide compositional range, the γ phase is formed between the Ni3Sn(H) phase and Cu4Sn(H) phase; however, both of these two binary phases are not stable at 800 °C. The binary Ni3Sn2 phase also has extensive ternary solubility. The homogeneity ranges of both the γ and Ni3Sn2 phases are very large in parallel to the Cu-Ni side, but relatively narrow along the Sn direction. This phenomenon indicates that Cu and Ni are exchangeable in both phases. Three kinds of reaction couples, Sn-55 at. pct Cu/Ni, Sn-65 at. pct Cu/Ni, and Sn-75 at. pct Cu/Ni, were prepared and reacted at 800 °C for 5 to 20 minutes. The reaction paths are liquid/Ni3Sn2/γ/Ni3Sn(L)/Ni for the Sn-55 at. pct Cu/Ni and Sn-65 at. pct Cu/Ni couples, and the reaction path is liquid/γ/Ni3Sn(L)/Ni for the Sn-75 at. pct Ni couples.  相似文献   

8.
The interface microstructures and dissolution behavior were studied, which occur between 99.9 pct Pd substrates and molten 95.5Sn-3.9Ag-0.6Cu (wt pct, Sn-Ag-Cu) solder. The solder bath temperatures were 513 K to 623 K (240 °C to 350 °C). The immersion times were 5 to 240 seconds. The IMC layer composition exhibited the (Pd, Cu)Sn4 (Cu, 0 to 2 at. pct) and (Pd, Sn) solid-solution phases for all test conditions. The phases PdSn and PdSn2 were observed only for the 623 K (350 °C), 60 seconds test conditions. The metastable phase, Pd11Sn9, occurred consistently for the 623 K (350 °C), 240 seconds conditions. Palladium-tin needles appeared in the Sn-Ag-Cu solder, but only at temperatures of 563 K (290 °C ) or higher, and had a (Pd, Cu)Sn4 stoichiometry. Palladium dissolution increased monotonically with both solder bath temperature and exposure time. The rate kinetics of dissolution were represented by the expression At n exp(∆H/RT), where the time exponent (n) was 0.52 ± 0.10 and the apparent activation energy (∆H) was 44 ± 9 kJ/mol. The IMC layer thickness increased between 513 K and 563 K (240 °C and 290 °C) to approximately 3 to 5 μm, but then was less than 3 μm at 593 K and 623 K (320 °C and 350 °C). The thickness values exhibited no significant time dependence. As a protective finish in electronics assembly applications, Pd would be relatively slow to dissolve into molten Sn-Ag-Cu solder. The Pd-Sn IMC layer would remain sufficiently thin and adherent to a residual Pd layer so as to pose a minimal reliability concern for Sn-Ag-Cu solder interconnections.  相似文献   

9.
The reduction kinetics from Ni(OH)2 to fine Ni metal powder under hydrothermal and H2 pressure conditions using anthraquinon as an activator were investigated. The reduction ratio increased with temperature up to 225 °C. The H2 molecule was activated by anthraquinone. This activated hydrogen acts as a reduction reagent from Ni2+ to Ni0. The process may proceed by heterogeneous reaction of Ni2+ ion and solid anthraquinon as follows: (1) anthraquinon is hydrated, (2) Ni2+ ion is absorbed on anthraquinon hydride, and (3) this complex decomposes to Ni0 powder, anthraquinon, and H2O. The particle size of nickel powder obtained increased with increasing temperature and with decreasing pH. The average particle size was about 350 nm. The reduction kinetics were in good agreement with a core model equation with surface reaction, that is, 1 − (1 −x)1/3 =kt, wherex is a reaction ratio andt is reaction time. Arrhenius plots showed two slopes with activation energies 65.9 kJ/mol at higher temperature and 377.2 kJ/mol at lower one. This result shows that the hydration of anthraquinon and adsorption of Ni2+ ion onto anthraquinon hydride and decomposition to Ni metal and anthraquinone proceed by consecutive reactions and rate determining steps change in each temperature range.  相似文献   

10.
The solubility of hydrogen in the Fe−Co−Ni ternary has been determined by the Sieverts' method over the temperature range 1500° to 1700°C. The solubility of hydrogen at 1600°C and 1 atm hydrogen pressure is 0.00264 wt pct in iron, 0.00224 wt pct in cobalt, and 0.00448 wt pct in nickel. Hydrogen follows Sieverts' law for all alloy compositions. The solubility surface rises smoothly from the Fe−Co binary to the nickel corner of the ternary, and when expressed as the free energy of hydrogen solution the surface is planar. The enthalpy of hydrogen solution is 8.0 kcal per g-atom H in iron, 8.5 kcal per g-atom H in cobalt, and 5.2 kcal per g-atom H in nickel and is planar for the entire ternary. Interaction parameters with hydrogen for Al, Cu, and Mn were established: ɛ H Al =2.0, ɛ H Cu , and ɛ H Mn and are constant for the entire Fe−Co−Ni ternary. This paper is based on a portion of a thesis submitted by R. G. BLOSSEY in partial fulfillment of the requirements for the degree of Doctor of Philosophy at The University of Michigan.  相似文献   

11.
The kinetics and mechanism of reactions of molten Fe, Co, Cu, and Pb sulfides with hydrogen have been investigated between 1080° and 1340°C. While maintaining high flow rates of hydrogen and argon to ensure chemical control, the rate of reduction of these sulfides was found to be second order in sulfur concentration and half-order in hydrogen pressure. These dependences are similar to those reported earlier for molten nickel sulfide reduction by hydrogen. The kinetics and mechanistic proposal suggest a metal catalyzed step. If the activation energies for the rate determining step of S2 reacting with hydrogen in the melt for the various sulfides are compared with the values for the hydrogen-liquid sulfur or hydrogen-gaseous sulfur reactions, the order of catalytic activity seems to follow generally the order of the pure metals themselves as found for other processes involving activation of molecular hydrogen.  相似文献   

12.
A series of Al-Cu-Ni alloys of various compositions were made and annealed at 800 °C. The equilibrium phases were studied by metallography, X-ray diffraction (XRD) analysis, and electron probe microanalysis. The isothermal section of the ternary Al-Cu-Ni system at 800 °C was then determined based on these experimental results and the available phase relationship knowledge of the three constituent binary systems. No ternary compound was found. All three phases, AlNi3, AlNi, and Al3Ni2, have very high ternary solubility, especially the AlNi phase, which almost reaches the binary Al-Cu side. However, no continuous solid solution was formed between the AlNi phase and any of the binary Al-Cu phases. Interfacial reactions of Al/Ni, Al/Cu, Al-Cu/Ni, and Al-Ni/Cu at 800 °C were investigated by using reaction couple techniques. The results showed that Al3Ni and Al3Ni2 phases were formed in the Al/Ni couples; β-AlCu4, γ 1-Al4Cu9, and ɛ 2-Al2Cu3 phases were formed in the Al/Cu couples. As for the results in the Al-2 at. pct Ni/Cu, Al-5 at. pct Ni/Cu, and Al-2 at. pct Cu/Ni, Al-4.5 at. pct Cu/Ni, and Al-6 at. pct Cu/Ni were similar to those in the binary Al/Cu and Al/Ni couples, respectively. A different reaction path was found in the Al-7.5 at. pct Cu/Ni couples, and an AlNi solid solution layer was formed instead of the Al3Ni and Al3Ni2 phases.  相似文献   

13.
14.
In the present work, the kinetics of reduction of nickel tungstate, NiWO4, by hydrogen was investigated by a thermogravimetric method in the temperature range 891 to 1141 K. The experiments were conducted under both isothermal and nonisothermal conditions. The products were examined by X-ray diffraction analysis. The results indicate that the reduction reaction proceeds in two steps; first, reduction of NiWO4 to nickel as well as WO2 and then WO2 to tungsten. From the isothermal experiments, the activation energies of the two reaction steps were calculated to be 95.3 ± 4.9 and 80.8 ± 6.4 kJ · mol−1, respectively. The activation energy value obtained from nonisothermal experiments for the first step is in agreement with the isothermal experiments. The values are compared with the activation energies reported in other literature for the individual oxides. Formerly with Royal Institute of Technology, Stockholm, Sweden  相似文献   

15.
The synthesis of magnetic Ni nanoparticles is being investigated by the reduction of NiO nanoparticles in the presence of hydrogen gas. In this study, nanocrystalline NiO particles have been synthesized by a homogenous carbonate precipitation method employing nickel electrolyte (NiSO4) as the source of nickel and ammonium hydrogen carbonate as the precipitating agent. Nickel electrolyte (NiSO4) was obtained after processing of sea nodules by the roasting-ammonia leaching-solvent extraction method. The physicochemical characterization of NiO and Ni particles, i.e., bright field image by transmission electron microscope, X-ray diffraction, scanning electron microscope, energy dispersive X-ray analysis, Fourier transform-infrared (FT-IR) study, and magnetic measurements by vibration sample magnetometer (VSM) are studied. The particles are observed to be superparamagnetic.  相似文献   

16.
The microstructural evolution and mechanical properties of an AC8A/12 vol Pct A12O3 (sf) composite fabricated by squeeze casting were characterized. Thermal treatments included the normal T6 temper and thermal exposure at 150 °C, 250 °C, 300 °C, and 350 °C for 400 hours. The predominant strengthening phase in the matrix appeared to be β′ (Mg2Si) needles. Bulk pure Si particles and dendrites were commonly seen. Large particles, termed asB-type phase, might include hexagonal Al3(Ni, Cu, Fe, Si, Mg)2 and orthorhombic Al3(Ni, Cu, Fe, Si, Mg) phases. Both the Si andB dispersoids were not obviously affected by artificial aging at 150 °C to 350 °C. In certain cases, large cubic β (Mg2Si) particles, hexagonalQ′ orQ (Al4Cu2Mg8Si7) precipitates, and numerous small Al particles inside Si dispersoids were also seen. No interfacial reaction product was observed along the fiber/ matrix interface even after long exposure at 350 °C. Amorphous SiO2 gels, which were used as a binder during fabrication, were occasionally observed. The tensile and fatigue behavior of the AC8A alloys and composites after the preceding thermal exposures were evaluated over the temperature range of 25 °C to 350 °C. The composites showed similar strength as the matrix alloy at room temperature but exhibited higher strength at temperatures above 250 °C, with the sacrifice of the lower ductility. The strength levels of both the alloys and composites were significantly reduced after long thermal exposure, especially for temperatures higher than 250 °C. The loss of strength after long-term exposure at elevated temperatures may be attributed to age-softening of the matrix.  相似文献   

17.
18.
The interface microstructures and dissolution behavior were studied, which occur between 99.9 pct Pd substrates and molten 95.5Sn-3.9Ag-0.6Cu (wt pct, Sn-Ag-Cu) solder. The solder bath temperatures were 513 K to 623 K (240 °C to 350 °C). The immersion times were 5 to 240 seconds. The IMC layer composition exhibited the (Pd, Cu)Sn4 (Cu, 0 to 2 at. pct) and (Pd, Sn) solid-solution phases for all test conditions. The phases PdSn and PdSn2 were observed only for the 623 K (350 °C), 60 seconds test conditions. The metastable phase, Pd11Sn9, occurred consistently for the 623 K (350 °C), 240 seconds conditions. Palladium-tin needles appeared in the Sn-Ag-Cu solder, but only at temperatures of 563 K (290 °C ) or higher, and had a (Pd, Cu)Sn4 stoichiometry. Palladium dissolution increased monotonically with both solder bath temperature and exposure time. The rate kinetics of dissolution were represented by the expression At n exp(?H/RT), where the time exponent (n) was 0.52 ± 0.10 and the apparent activation energy (?H) was 44 ± 9 kJ/mol. The IMC layer thickness increased between 513 K and 563 K (240 °C and 290 °C) to approximately 3 to 5 µm, but then was less than 3 µm at 593 K and 623 K (320 °C and 350 °C). The thickness values exhibited no significant time dependence. As a protective finish in electronics assembly applications, Pd would be relatively slow to dissolve into molten Sn-Ag-Cu solder. The Pd-Sn IMC layer would remain sufficiently thin and adherent to a residual Pd layer so as to pose a minimal reliability concern for Sn-Ag-Cu solder interconnections.  相似文献   

19.
Filled Ti2Ni type (η) phases have been reported in the past and presumed to exist in the systems Hf?Ni?O, Ta?Ni?O, and W?Ni?O. An investigation of 1000°C isothermal sections in these three systems shows that only the Hf?Ni oxide reported by Nevitt, Downey, and Morris is stable. It has an Hf-to-Ni ratio of 2∶1 and an oxygen content of 4 to 8 at. pct. Its lattice constant varies from 12.135 to 12.108 Å and decreases with increasing nickel content. In Ta?Ni?O and W?Ni?O the η phase is stabilized when nitrogen is accidentally picked up during sample preparation. The systems Fe?W?O and Co?W?O, which were reported to have η oxides, only show binary phases at 1000°C. New phases found in this investigation are ~Hf4Ni2N with the η carbide structure, and Hf74Ni24O2 and Hf74Ni24N2 of identical but unknown structure.  相似文献   

20.
The electrochemical permeation technique has been used to characterize hydrogen transport and trapping in pure nickel and in alloys 600, X-750, and 718 at a temperature of 80 °C. The “effective diffusivity ” of hydrogen atoms in alloy 600 is reduced by a factor of about 5 compared to pure nickel. This is attributed to both compositional changes and the presence of [(Ti, Nb)C] carbides. Aging of alloy 600, with subsequent M23C6 carbide precipitation, does not significantly influence the measured “effective diffusivity,” which is explained by the dominant effect of preexisting [(Ti, Nb)C] carbides. The “effective diffusivity” of hydrogen atoms in solution-annealed alloy X-750 is reduced by a factor of about 9 compared to that of pure nickel. This is also attributed to compositional changes and [(Ti,Nb)C] carbides. Aging of alloy X-750, which causes precipitation of γ′[Ni3(Al, Ti)], reduces the “effective diffusivity” by an additional factor of 5 or more. Double aging at 885 °C/24 hours, 704 °C/20 hours following hot working yields the greatest reduction in “effective diffusivity.” Analysis of permeation transients using a diffusion- trapping model indicates a binding energy associated with trapping due to the γ phase of be- tween -31 and -37 kJ/mol. The “effective diffusivity” of hydrogen in alloy 718 is about 40 pct greater than for alloy X-750 for the same double and direct aging treatments. The average “effective diffusivities” of the double-aged and direct-aged alloy 718 are comparable, but the permeation transients for the double-aged treatment are significantly steeper. The double-aged treatment with predominantly δ phase (orthorhombic Ni3Nb) yields a binding energy of about -30 kJ/mol. Analysis of the direct aged-treated 718, which contains predominantly γ″ phase (body-centered tetragonal Ni3Nb) gave a binding energy between -23 and -27 kJ/mol. Seg- regation of hydrogen atoms to the γ matrix interface, combined with a large volume fraction of γ′ at grain boundaries, provides the most likely explanation for the enhanced cracking as- sociated with the double-aging treatment in alloy X-750.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号