首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The microstructure of the weld was examined by light and electron microscopy (scanning and transmission). The various regions, i.e. thermomechanically affected zone, heat affected zone and unaffected base material, were studied in detail to better understand the microstructural evolution during friction stir welding and its impact on basic mechanical properties. The change in morphology of the strengthening phases reflected the relative temperature profile and the amount of deformation across the welded joint during the stir welding process. The centre of the weld was composed of fine grains and coarse particles identified mainly as MgZn2. In the thermomechanically and heat affected zones, the grain size was not uniform, and the strengthening phases filled the grain interiors, while grain boundaries were surrounded by precipitation free zones. The size of the strengthening phase decreased towards the base material. The hardness profile of the friction stir weld displayed the lowest hardness on the retreating side. Tensile properties of the weld itself were superior to those for material containing weld.  相似文献   

2.
Friction Stir Weldabilities of AA1050-H24 and AA6061-T6 Aluminum Alloys   总被引:1,自引:0,他引:1  
The friction stir weldabilities of the strain-hardened AA1050-H24 and precipitate-hardened AA6061-T6 aluminum alloys were examined to reveal the effects of material properties on the friction stir welding behavior. The experimental results are obtlained. (1) For AA1050-H24, the weld can possess smoother surface ripples; there is no elliptical weld nugget in the weld; there is no discernible interface between the stir zone and the thermomechanically affected zone; and the internal defect of the weld looks like a long crack and is located in the lower part of the weld. (2) For AA6061-T6, the weld usually possesses slightly rougher surface ripples; an elliptical weld nugget clearly exists in the weld; there are discernible interfaces among the weld nugget, thermomechanically affected zone and heat affected zone; and the internal defect of the weld is similar to that of the AA1050-H24 weld. (3) The effective range of welding parameters for AA1050-H24 is narrow, while the one for AA6061-T6 is very wide. (4) T  相似文献   

3.
Microstructural, mechanical and corrosive properties of friction stir welded aluminium joints Friction stir welding (FSW) is a novel solid state welding process. It allows joining of high strength aluminum alloys, generally considered as difficult-to-weld with conventional technologies, without loss in joint strength. Results of investigations on selfmade FSW butt joints of the aluminum alloys 2024-T3 and 6013-T4 are presented. First, the microstructure of the weld seam and heat affected zone is characterised metallographically and by hardness measurements. By tensile, fatigue endurance (SN) and fatigue crack propagation tests it is demonstrated, that especially the FSW-joints of 2024–T3 sustain high mechanical loadings. Investigations on the corrosion properties reveal a certain sensitivity of the 2024-T3 joints to intergranular and exfoliation corrosion.  相似文献   

4.
Abstract

The microstructural change related with the hardness profile has been evaluated for friction stir welded, age hardenable 6005 Al alloy. Frictional heat and plastic flow during friction stir welding created fine and equiaxed grains in the stir zone (SZ), and elongated and recovered grains in the thermomechanically affected zone (TMAZ). The heat affected zone (HAZ), identified only by the hardness result because there is no difference in grain structure compared to the base metal, was formed beside the weld zone. A softened region was formed near the weld zone during the friction stir welding process. The softened region was characterised by the dissolution and coarsening of the strengthening precipitate during friction stir welding. Sound joints in 6005 Al alloys were successfully formed under a wide range of friction stir welding conditions. The maximum tensile strength, obtained at 507 mm min-1 welding speed and 1600 rev min-1 tool rotation speed, was 220 MPa, which was 85% of the strength of the base metal.  相似文献   

5.
Abstract

The weldability of friction stir welded hot rolled AZ31B-H24 magnesium alloy sheet, 4 mm in thickness, was evaluated, varying welding parameters such as tool rotation speed and travel welding speed. Sound welding conditions depended mainly on sufficient heat input during the welding process. Insufficient heat input, which was generated in the case of higher travel speed and lower rotation speed, caused an inner void or lack of bonding in the stir zone. The microstructure of the weld zone was composed of five regions: base metal, heat affected zone, thermomechanically affected zone, stir zone I and stir zone II. Unlike the general feature of friction stir welded aluminium alloys, the grain size of the weld zone was larger than that of the base metal. Stir zones I and II were characterised by partial dynamic recrystallisation and full dynamic recrystallisation, respectively. The hardness of the weld zone was lower than that of the base metal owing to grain growth. A wider range of defect free welding conditions was acquired at higher tool rotation speed and lower welding speed. The maximum tensile strengh was 240 MPa, which was ~85% of the base metal value of 293 MPa. The fracture location was close to the stir zone.  相似文献   

6.
In this study, the very high cycle fatigue (VHCF) properties of 7050-T7451 aluminum alloy and its friction stir welding (FSW) butt welds have been investigated. The results show that the failure of FSW joints still occurs at 7.0 × 108 cycles. The fatigue properties of the FSW joints are superior to those of the base material, especially in the super long life regime. Most fatigue cracks initiate at the thermo-mechanically affected zone and heat affected zone on the advancing side of the FSW joints, and the susceptibility of these zones to fatigue is attributed to the metallurgical heterogeneity.  相似文献   

7.
Scanning electrochemical microscopy(SECM) and scanning vibrating electrode technique(SVET) were used to investigate the electrochemical behaviour of the top surface of the 2098-T351 alloy welded by friction stir welding(FSW). The SVET technique was efficient in identifying the cathodic and anodic weld regions. The welding joint(WJ), which comprises the thermomechanically affected zone(TMAZ) and the stir zone(SZ), was cathodic relative to the heated affected zone(HAZ) and the base metal(BM). The reactivities of the welding joint at the advancing side(AS) and the retreating side(RS) were analyzed and compared using SECM technique in the competition mode by monitoring the dissolved oxygen as a redox mediator in 0.005 mol L~(-1) NaCl solution. The RS was more electrochemically active than the AS,and these results were correlated with the microstructural features of the welded alloy.  相似文献   

8.
The aim of this work is to present a case study relating to the dissimilar friction stir welding (FSW) ability of AA 7075‐T651 and AA 6013‐T6 by applying pin offset technique. An orthogonal array L18 was conducted to perform the overlapped weld seams using three different values of pin offset, welding speed and tool rotational speed along with two different pin profiles determine the impact of welding parameters on the tensile properties of friction stir welded joints. The nugget zone for each of overlapped weld seams exhibited a complex structure and also, the pin offset and profile also were found to have a great impact on the microstructural evolution of the nugget zone. The ultimate tensile strength, elongation at the rapture and bending strength of welded joints were measured in the ranges of 194–215 MPa, 1.79–3.34 % and 203–352 MPa. From the Taguchi based Grey relational analysis, the optimum welding condition was determined for the welded joint performed using a single fluted pin profile with the zero pin offset, tool rotational speed of 630 min?1 and welding speed of 63 mm/min. Microstructural and macro‐structural observations revealed that welded joints exhibiting lower tensile strength are consistent of various types of defects (e. g. cracks, tunnels and cavities). The fracture location of welded joints was found to be on the heat affected zone and between the heat affected zone and AA 6013‐base metal. The tool and pin wear was not observed during the welding applications  相似文献   

9.
The focus of this paper will be on the fatigue behavior of friction stir welded 2195 Al–Li plates that contain friction plug welds. Tensile tests were performed for specimens containing base metal, friction stir welded 2195-T8, and friction stir welded 2195-T8 containing a friction plug weld consisting of a 2195-T8 plug. The ultimate strength was determined for base metal, friction stir welded material, and friction plug welded material. Fatigue properties were determined for both the friction stir weld and friction plug welded specimens in the medium to high cycle regimes. Comparison of the results show that the friction plug weld reduced both the UTS and fatigue life as compared to specimens containing only friction stir weld. The reduction in fatigue life is most likely due to the complication of weld geometry, interacting heat affected zones, and strength mismatch between base metal, friction stir weld, and plug material.  相似文献   

10.
Self-reacting friction stir welding (SR-FSW), also called bobbin-tool friction stir welding (BT-FSW), is a solid state welding process similar to friction stir welding (FSW) except that the tool has two opposing shoulders instead of the shoulder and a backing plate found in FSW. The tool configuration results in greater heat input and a symmetrical weld macrostructure. A significant amount of information has been published in the literature concerning traditional FSW while little has been published about SR-FSW. An optimization experiment was performed using a factorial design to evaluate the effect of process parameters on the weld temperature, surface and internal quality, and mechanical properties of self-reacting friction stir welded aluminum alloy 6061-T6 butt joints. The parameters evaluated were tool rotational speed, traverse speed, and tool plunge force. A correlation between weld temperature, defect formation (specifically galling and void formation), and mechanical properties was found. Optimum parameters were determined for the welding of 8-mm-thick 6061-T6 plate.  相似文献   

11.
In this paper, the effects of post‐weld heat treatment on modification of microstructures and mechanical properties of friction stir welded and gas metal arc welded AA6061‐O plates were compared with each other. Gas metal arc welding and friction stir welding were used as the applicable welding processes for AA6061‐O alloys. The applied post‐weld heat treatment consisted of solution heat treatment, followed by water quenching and finally artificial aging. The samples were classified as post‐weld heat treated and as‐welded joints. The microstructural evolution, tensile properties, hardness features and fracture surfaces of both as‐welded and post‐weld heat treated samples were reported. The results clearly showed that friction stir welding process demonstrated better and more consistent mechanical properties by comparison with the gas metal arc welding process. The weld region of as‐welded samples exhibited a higher hardness value of 80 HV0.1 compared to the base material. In addition, the feasibility of post‐weld heat treatment in order to enhance the mechanical properties and to obtain more homogeneous microstructure of 6061‐O aluminum alloys was evaluated.  相似文献   

12.
目的探究超声振动对铝合金搅拌摩擦焊的作用效果。方法分别采用普通搅拌摩擦焊和超声辅助搅拌摩擦焊方法,对7075铝合金进行焊接试验,并对焊接接头的微观组织、力学性能、断口形貌进行分析。结果普通搅拌摩擦焊焊缝中生成了隧道型缺陷,施加超声振动后,缺陷消失,形成了无缺陷的良好接头,且与普通搅拌摩擦焊相比,超声辅助搅拌摩擦焊焊缝热影响区晶粒长大程度较小,焊核晶粒细化。接头强度明显提高,达到铝合金母材强度的71.5%,接头断裂模式为韧窝和准解理的混合断裂形式。结论超声振动促进了塑性金属的流动,能有效抑制孔洞、隧道型缺陷等的形成,同时超声振动能在提升金属塑性的同时,降低焊缝的热输入。  相似文献   

13.
Ultra-high strength spray formed 7055 aluminum alloy in which Zn is supersaturated solid solution requires strict control of heat input in welding process. In this paper, underwater friction stir welding is carried out in order to reduce heat input comparing with traditional friction stir welding and further improve the joint performances by varying welding temperature history. Through comparing the thermal cycle curves and distribution of residual stress of the plate welded in different media, the reason why the joint welded underwater shows a better performance is figured out. The result shows that tensile strength, hardness and plasticity of underwater welded joint are better than that welded in air. The underwater joint has a fine grained microstructure without “S line” defect, a typically distinct boundary between the weld nugget zone and the thermal mechanically affected zone and a narrow heat affected zone. The main strengthening phase in underwater joint is MgZn2 .  相似文献   

14.
Influence of natural aging on mechanical and microstructural properties of friction stir welded 6063-T4 aluminium alloy plates was investigated through mechanical testing, X-ray diffraction studies, and transmission electron microscopy, for aging times up to 8640 h. Mg–Si co-clusters formed during the natural aging process resulted in an increase in strength, decrease in ductility, and occurrence of serrated plastic flow. Hardness increase from aging was fastest in welds obtained at higher tool rotational speeds due to greater amount of “quenched-in” vacancies from higher peak stir zone temperatures. Peak broadening analyses and classical Williamson–Hall plots were used to investigate the effect of friction stir welding and post weld natural aging on microstrain in different weld regions. Higher microstrain was found in stir zone as well as heat affected zone as compared to that for base metal, albeit for different reasons.  相似文献   

15.
Submerged friction stir welding (FSW) in cold and hot water, as well as in air, was carried out for 7050 aluminum alloys. The weld thermal cycles and transverse distributions of the microhardness of the weld joints were measured, and their tensile properties were tested. The fracture surfaces of the tensile specimens were observed, and the microstructures at the fracture region were investigated. The results show that the peak temperature during welding in air was up to 380 °C, while the peak temperatures during welding in cold and hot water were about 220 and 300 °C, respectively. The temperature at the retreated side of the joint was higher than that at the advanced side for all weld joints. The distributions of microhardness exhibited a typical “W” shape. The width of the low hardness zone varied with the weld ambient conditions. The minimum hardness zone was located at the heat affected zone (HAZ) of the weld joints. Better tensile properties were achieved for joint welded in hot water, and the strength ratio of the weld joint to the base metal was up to 92%. The tensile fracture position was located at the low hardness zone of the weld joints. The fracture surfaces exhibited a mixture of dimples and quasi-cleavage planes for the joints welded in cold and hot water, and only dimples for the joint welded in air.  相似文献   

16.
Friction stir welded AA5052-O and AA6061-T6 dissimilar joint has a more obvious impact on microstructure and texture evolution compared to single material welding due to differences in physical and chemical parameters between two aluminum alloys. Microstructure, texture evolution and grain structure of AA5052-O and AA6061-T6 dissimilar joint were investigated by means of OM,EBSD and TEM measurements. Experimental results showed that FS weld was generalized in four regions–nugget zone (NZ),thermomechanically affected zone (TMAZ),heat affected zone (HAZ) and base metals (BM), using standard nomenclatures. NZ exhibited the complex structure of the two materials with flowing shape and mainly composed of the advancing side material Subgrain boundaries in weld nugget zone gradually transformed into high angle grain boundaries by absorbing dislocation and accumulating misorientations. Grain refinement of weld nugget zone was achieved by dynamic recrystallization. In the friction stir welding process, the presence of the shear deformation in weld made {001} < 100 > C cube texture, {123} < 634 > S texture in BM gradually transformed into {111} < 1(−)12(−) > A11 shear texture. HABs distribution were most significant in nugget followed by RS and then by AS. In TMAZ and NZ, numerous precipitates and lots of dislocations were observed.  相似文献   

17.
A high strength Al–Zn–Mg alloy AA7039 was friction stir welded by varying welding and rotary speed of the tool in order to investigate the effect of varying welding parameters on microstructure and mechanical properties. The friction stir welding (FSW) process parameters have great influence on heat input per unit length of weld, hence on temperature profile which in turn governs the microstructure and mechanical properties of welded joints. There exits an optimum combination of welding and rotary speed to produce a sound and defect free joint with microstructure that yields maximum mechanical properties. The mechanical properties increase with decreasing welding speed/ increasing rotary speed i.e. with increasing heat input per unit length of welded joint. The high heat input joints fractured from heat affected zone (HAZ) adjacent to thermo-mechanically affected zone (TMAZ) on advancing side while low heat input joints fractured from weld nugget along zigzag line on advancing side.  相似文献   

18.
Microstructure and mechanical properties of friction stir welded copper   总被引:1,自引:0,他引:1  
The main objective of this investigation was to apply friction stir welding technique (FSW) for joining of 2 mm thick copper sheet. The defect free weld was obtained at a tool rotational and travel speed of 1,000 rpm and 30 mm/min, respectively. Mechanical and microstructural analysis has been performed to evaluate the characteristics of friction stir welded copper. The microstructure of the weld nugget (WN) consists of fine equiaxed grains. Similarly, the elongated grains in the thermomechanically affected zone (TMAZ) and coarse grains in the heat-affected zone (HAZ) were observed. The hardness values in the WN were higher than the base material. Eventually HAZ shows lowest hardness values because of few coarse grains presence. Friction stir welded copper joints passes 85% weld efficiency as compared to the parent metal.  相似文献   

19.
Susceptibility to stress corrosion tests were carried out on electron beam welded specimens made from 7050-T7451 aluminium alloy. As a comparison, specimens made from base material were tested too. The resistance of the welded material was high: the tensile properties were only slightly lower than those of the base material. After 30 day exposure to a corrosive environment (alternate immersion in a 3.5% NaCl solution), the tensile properties of the welded material were considerably reduced, while the same properties were only slightly affected in the base material. The combined effect of stress and corrosion was only slightly detrimental for the base material and very detrimental for the welded material. At the lowest stress level tested, about 25% of the ultimate stress, the welded specimens failed after a mean life of 90 days. Considerable residual stresses associated with the welding process were measured in a plate. A test was performed to verify the possibility of stress corrosion cracking promoted by the welding residual stresses. In actual fact, no cracks were observed, but the corrosion rate increased, particularly in the areas affected by the higher residual stresses.  相似文献   

20.
The V-95 and D-19 precipitation hardened Russian aluminum alloys are widely used in the Russian aircraft industry and these alloys are not weldable by conventional fusion weld techniques. This paper intends to evaluate the effect of spindle and weld speed on joint strength characteristics of a single pass (SP) and double pass (DP) friction stir lap weld through a common heat index and to analyze the effect of retrogression and re-ageing treatment (RRA) on joint strength and corrosion characteristics. The strength characteristics were analyzed by welding and shear testing of specimens and corrosion susceptibility of joint through immersion in EXCO solution as per ASTM G34. The trials revealed that the joint strength of the welded alloy is inversely proportional to the heat index and the DP weld provided significantly higher strength than an SP weld. The heat affected zone of the joint was found most sensitized to corrosion. The RRA treatment was found to improve the strength of the joints welded with higher heat input while it slightly degraded the joint strength for low heat input welds. The corrosion characteristics of the welded joint is also significantly improved by the post weld RRA treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号