首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为提高钛合金高温微动疲劳抗力,利用离子辅助电弧沉积技术在TC17钛合金表面制各了TiN/Ti复合膜层,研究了膜层的剖面成分分布、膜基结合强度、膜层显微硬度、韧性、常规摩擦学性能以及抗高温微动疲劳性能.结果表明:利用离子辅助电弧沉积技术可以获得硬度高、韧性好、膜基结合强度和承载能力优异的TiN/Ti复合膜层,该膜层具有良好的抗磨和减摩性能,能够显著地提高TC17钛合金在350℃高温环境下的常规磨损和微动疲劳抗力.然而,TC17钛合金表面喷丸强化后进行离子辅助沉积TiN/Ti复合膜,由于喷丸层残余压应力的显著松弛以及膜层易于开裂和脱落的缘故,微动疲劳抗力则不及喷丸强化或TiN/Ti复合膜单独作用.  相似文献   

2.
钛合金表面离子束增强沉积MoS2基膜层及其性能   总被引:8,自引:4,他引:4  
将离子束增强沉积(IBED)技术与离子束溅射的沉积技术相结合,在钛合金表面制备了MoS2,MoS2-Ti复合膜。研究了膜层的形态、结构、膜基结合强度、硬度、摩擦学性能及抗微动(fretting)损伤性能。结果表明;所获膜层较纯溅射膜结合强度高、致密性好,复合膜中允许的金属元素含量大。通过恰当地控制复合膜中Ti的含量,可获得以(002)基面择优取向的MoS2-Ti复合膜,该膜层有较好的减摩和抗磨综合性能,能够显著地改善钛合金的常规磨损、微动摩员(FW)和微动疲劳(FF)性能,特别是在磨损严重的大位移整体滑条件下,MoS2-Ti复合膜对钛合金FF抗力的提高作用可大于喷丸形变强化处理。  相似文献   

3.
Mo电极电火花强化与喷丸复合提高Ti合金微动疲劳抗力   总被引:2,自引:0,他引:2  
采用Mo电极分别在空气和硅油中对Ti811钛合金表面进行电火花强化处理(ESS),探讨消除强化层中裂纹缺陷的途径。将ESS与喷丸强化复合,拟使Ti合金微动疲劳(FF)抗力得到显著改善。结果表明:Mo电极在空气中电火花强化处理Ti811钛合金表面后,强化层出现明显的微裂纹缺陷,由此导致其微动疲劳抗力降低。在硅油中用Mo电极电火花处理Ti811合金不仅消除了表面裂纹缺陷,而且使钛合金表面具有良好的减摩润滑作用,显著改善了钛合金基材的耐磨性能;再经喷丸强化处理,使钛合金基材的微动疲劳抗力显著提高。  相似文献   

4.
Cu/Ni多层膜对Ti811合金微动磨损和微动疲劳抗力的影响   总被引:1,自引:0,他引:1  
在Ti811钛合金表面利用离子辅助磁控溅射沉积技术制备20~1200nm不同调制周期的Cu/Ni金属多层膜,分析多层膜的结构,测试膜基结合强度、膜层显微硬度和韧性,对比研究不同调制周期的Cu/Ni多层膜对钛合金基材常温下微动磨损性能和微动疲劳(FF)抗力的影响。结果表明:利用离子辅助磁控溅射技术可以获得致密度高、晶粒细化、膜基结合强度高的Cu/Ni多层膜,该类多层膜具有良好的减摩润滑作用,因而改善了Ti811钛合金常温下抗微动磨损和微动疲劳性能;Cu/Ni多层膜对钛合金FF抗力的改善程度随膜层调制周期呈现非单调变化趋势,调制周期为200nm的Cu/Ni多层膜对钛合金FF抗力的提高程度最大,原因归于该膜层具有良好的强韧和润滑综合性能。  相似文献   

5.
钛合金表面离子束增强沉积的Cr和CrMo合金膜层及其性能   总被引:5,自引:1,他引:5  
利用多功能离子束增强沉积(IBED)设备,在Ti6Al4V钛合金表面制备Cr和CrMo合金膜层,以提高钛合金表面的耐磨性能。利用X射线衍射仪、扫描电子显微镜、辉光放电光谱仪和显微硬度计分析和测试了IBED膜层的结构、形态、成分分布、硬度和膜基结合强度的大小。利用球一盘磨损试验机和电化学综合测试仪研究了IBED膜层的摩擦学性能和电化学腐蚀特性。结果表明,利用IBED方法可以在难镀材料钛合金表面制备膜基结合强度高、结晶致密和晶粒尺寸达纳米级的高硬度Cr膜和CrMo合金膜层,显著提高了钛合金表面的抗磨性能,且膜层本身有很好的耐Cl^-介质环境电化学腐蚀性能,与钛合金基体之间有很好的接触腐蚀相容性。  相似文献   

6.
喷丸强化因素对Ti811合金高温微动疲劳抗力的影响   总被引:4,自引:0,他引:4  
探讨了高温下喷丸强化(SP)因素(残余压应力引入、表面粗糙度增大、表面加工硬化等)对Ti811钛合金微动疲劳(FF)抗力的作用规律和机制。结果表明,SP处理可以有效地提高350℃高温下Ti811合金的微动疲劳抗力,但对500℃下FF抗力有不利影响:SP引入的表层残余压应力增加裂纹闭合力,是SP提高350℃高温下钛合金FF抗力最为重要的因素,SP表面加工硬化的作用为次要因素;SP造成的粗糙度增大在350℃和500℃高温下对钛合金的FF抗力呈现出不利的作用,原因是表面机械损伤的影响突出,这种影响与残余压应力的存在状态有关。  相似文献   

7.
等离子渗氮与喷丸强化复合改进钛合金抗微动损伤性能   总被引:16,自引:1,他引:16  
利用直流脉冲等离子电源装置对Ti6A14V钛合金表面渗氮处理,研究了渗氮层的相组成、硬度分布、韧度及摩擦学性能,采用喷丸形变强化(SP)对渗氮层进行后处理,以达到联合提高钛合金微动疲劳(FF)抗力的目的.研究结果表明:脉冲电源等离子技术可在钛合金表面获得由TiN、Ti2N、Ti2A1N等相组成的渗氮层,该改性层能够显著地提高钛合金常规磨损和微动磨损(FW)抗力,但降低了基材的FF抗力.渗氮层的减摩和抗磨性能与SP引入的表面残余压应力协同作用,使钛合金FF抗力超过了SP单独作用.提高渗氮层韧度对改善钛合金FF和FW性能均十分重要.  相似文献   

8.
激光冲击处理对焊接接头力学性能的影响(Ⅰ)   总被引:1,自引:0,他引:1       下载免费PDF全文
当短脉冲、高峰值功率密度 (>10 13 W /m2 )的激光辐射金属靶材时 ,就产生高温、高压等离子体 ,该等离子体受到约束层的约束时产生高强度应力波冲击金属表面并向内部传播 ,在材料表面产生应变硬化 ,称这种表面强化技术为激光冲击处理或激光喷丸。激光冲击处理可以提高材料表层硬度、强度 ,并获得比传统的喷丸技术更深的硬化层或残余压应力层 ,从而更有利于材料疲劳性能的提高 ,为研究激光冲击处理在焊后强化方面的应用 ,本文对 1.6 6mm厚的镍基高温合金GH30、1.2mm厚的奥氏体不锈钢1Cr18Ni9Ti板材焊缝进行了激光冲击处理 ,对比了激光冲击处理试件和未经激光冲击处理试件焊逢的表层显微硬度、残余应力、抗拉强度和疲劳寿命 ,发现激光冲击处理能提高GH30氩弧焊焊接接头抗拉强度 12 % ,提高 1Cr18Ni9Ti等离子焊接接头疲劳寿命30 0 %以上。  相似文献   

9.
激光冲击处理对焊接接头力学性能的影响(I)   总被引:3,自引:2,他引:1       下载免费PDF全文
当短脉冲、高峰值功率密度(>10^13W/m^2)的激光辐射金属靶材时,就产生高温、高压等离子体,该等离子体受到约束层的约束时产生高强度应力波冲击金属表面并向内部传播,在材料表面产生应变硬化,称这种表面强化技术为激光冲击处理或激光喷丸。激光冲击处理可以提高材料表层硬度、强度,并获得比传统的喷丸技术更深的硬化层或残余压应力层,从而更有利于材料疲劳性能的提高,为研究激光冲击处理在焊后强化方面的应用,本文对1.66mm厚的镍基高温合金GH30、1.2mm厚的奥氏体不锈钢1Cr18Ni9Ti板材焊缝进行了激光冲击处理,对比了激光冲击处理试件和未激光冲击处理试件焊缝的表层显微硬度、残余应力、抗强度和疲劳寿命,发现激光冲击处理能提高GH30氩弧焊接接头抗拉强度12%,提高1Cr18Ni9Ti等离子焊接接头疲劳寿命300%以上。  相似文献   

10.
Ti811合金的高温微动疲劳行为   总被引:3,自引:1,他引:3  
利用高频疲劳实验机和自制高温微动疲劳装置,研究了温度、位移幅度、接触压力等因素在对Ti811钛合金高温微动疲劳(FF)行为的影响,并通过形态特征分析,研究了微动疲劳的失效机理.结果表明:350℃和500℃的高温下,Ti811合金微动疲劳敏感性较高,且随着温度的升高,微动疲劳的敏感性增强,蠕变是高温下Ti811合金FF失效的重要影响因素;FF的寿命随着接触压力和位移幅度的变化均呈现出非单调的变化规律,原因是名义接触压力的变化改变了接触区应力分布、应力集中状况和微动位移幅度大小,进而影响FF裂纹萌生几率和扩展驱动力;位移幅度变化影响了疲劳应力因素和磨损在FF过程中所起作用和机制.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号