首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental fate of persistent organic pollutants (POPs).  相似文献   

2.
3.
Dissolved organic matter leached from decomposing organic matter is important in the leaching of nutrients from the root zone of ecosystems, eluviation of metals, and transport of hydrophobic pollutants. The objective of this study was to compare microbial mineralization rates in intact soil cores of various fractions of water-soluble dissolved organic matter. Uniformly 14C-labeled Populus fremontii leaf litter that had decomposed for 1 year was extracted in water and this extract was fractionated into phenolic, humic acid, fulvic acid, hydrophilic acid, and hydrophilic neutral fractions. Fulvic acid comprised 42.1% of C in dissolved organic carbon (DOC) extracted from the litter. These fractions were added to intact cores of soil or sand, and respired 14CO2 was collected. The percentage of labeled substrate C mineralized in soil at the end of 1 year was, in order from least to greatest, hydrophilic acid (30.5), fulvic acid (33.8), humic acid (39.0), whole, unfractionated DOC (43.5), unseparated hydrophilic acid and neutral (44.7), phenolic (63.3), glucose (66.4), and hydrophilic neutral (70.2). In acid-washed nutrient-amended sand that was inoculated with soil microbes, mineralization rates of fulvic acid and glucose were lower. The fractionation appeared to separate the DOC into components with widely different rates of mineralization. Results also supported the ideas that the dissolved humic substance and hydrophilic acid fractions are inherently difficult for microbes to mineralize, and this property can contribute to movement of refractory C in soil and into aquatic ecosystems.  相似文献   

4.
Interest in the environmental fate of fluorotelomer alcohols (FTOHs) has spurred efforts to understand their equilibrium partitioning behavior. Experimentally determined partition coefficients for FTOHs between soil/water and air/water have been reported, but direct measurements of partition coefficients for dissolved organic carbon (DOC)/water (K(doc)) and octanol/ water(K(ow)) have been lacking. Here we measured the partitioning of 8:2 and 6:2 FTOH between one or more types of DOC and water using enhanced solubility or dialysis bag techniques, and also quantified K(ow) values for 4:2 to 8:2 FTOH using a batch equilibration method. The range in measured log K(doc) values for 8:2 FTOH using the enhanced solubility technique with DOC derived from two soils, two biosolids, and three reference humic acids is 2.00-3.97 with the lowest values obtained for the biosolids and an average across all other DOC sources (biosolid DOC excluded) of 3.54 +/- 0.29. For 6:2 FTOH and Aldrich humic acid, a log K(doc) value of 1.96 +/- 0.45 was measured using the dialysis technique. These average values are approximately 1 to 2 log units lower than previously indirectly estimated K(doc) values. Overall, the affinity for DOC tends to be slightly lower than that for particulate soil organic carbon. Measured log K(ow) values for 4:2 (3.30 +/- 0.04), 6:2 (4.54 +/- 0.01), and 8:2 FTOH (5.58 +/- 0.06) were in good agreement with previously reported estimates. Using relationships between experimentally measured partition coefficients and C-atom chain length, we estimated K(doc) and K(ow) values for shorter and longer chain FTOHs, respectively, that we were unable to measure experimentally.  相似文献   

5.
A chemical model (constructed in the ORCHESTRA modeling framework) of an organic soil horizon was used to describe soil solution data (10 cm depth) and assess if seasonal variations in soil solution dissolved organic carbon (DOC) could be explained by purely abiotic (geochemical controls) mechanisms or whether factors related to biological activity are needed. The NICA-Donnan equation is used to describe the competitive binding of protons and cations and the charge on soil organic matter. Controls on organic matter solubility are surface charge and a parameter, gamma, that accounts for the distribution of humic molecules between hydrophobic and hydrophilic fractions. Calculations show that the variations in solute chemistry alone are not sufficient to account for the observed variations of DOC, but factors that alter gamma, such as biological activity, are. Assuming that DOC in organic soils is derived from soluble humic material and that gamma is modified seasonally due to biological activity (with monthly soil temperature used as a surrogate for biological activity) we are able to model the observed seasonality of soil solution DOC over a 10-year period. Furthermore, with modeled DOC coupled to other geochemical processes we also model soil solution pH and Al concentrations.  相似文献   

6.
The last several decades have seen decreases in SO(4)(2-) deposition across the northeastern United States. As a result, SO(4)(2-) concentrations in lakes and streams have also decreased and many surface water bodies have become less acidic. During the same time period, there has been a concurrent increase in dissolved organic carbon (DOC) concentrations in many lakes and streams. We used fluorescence spectroscopy to characterize the dissolved organic matter (DOM) quality of archived samples from nine acid-sensitive lakes in Maine collected between 1993 and 2009, and determined that increased DOM contributions to lakes were primarily derived from litter and soil. All five lakes with increasing DOC trends demonstrated significant decreasing (i.e., more terrestrial) trends in fluorescence index (FI) and significant positive correlations between SO(4)(2-) and FI. This study used the chemical signature of terrestrial DOM to support the hypothesis that increased DOC concentrations in lakes and streams are driven by declining acid deposition and increased solubility of soil organic matter across a large area of the landscape.  相似文献   

7.
Metal speciation data calculated by modeling could give useful information regarding the fate of metals in the rhizospheric environment. However, no comparative study has evaluated the relative accuracy of speciation models in this microenvironment. Consequently, the present study evaluates the reliability of free Cu ion (Cu2+) activity modeled by WHAM 6 and MINEQL+ 4.5 for 18 bulk and 18 rhizospheric soil samples collected in two Canadian forested areas located near industrial facilities. The modeling of Cu speciation was performed on water extracts using pH, dissolved organic carbon (DOC), major ions, and total dissolved Al, Ca, Cu, Mg, and Zn concentrations as input data. Four scenarios representing the composition of dissolved organic substances using fulvic, humic, and acetic acids were derived from the literature and used in the modeling exercise. Different scenarios were used to contrast soil components (rhizosphere vs bulk) and soil pH levels (acidic vs neutral to alkaline). Reference Cu2+ activity values measured by an ion-selective electrode varied between 0.39 and 41 nM. The model MINEQL+ 4.5 provided good predictions of Cu2+ activities [root-mean-square residual (RMSR)= 0.37], while predictions from WHAM 6 were poor (RMSR = 1.74) because they overestimated Cu complexation with DOC. Modeling with WHAM 6 could be improved by adjusting the proportion of inert DOC and the composition of DOC (RMSR = 0.94), but it remained weaker than predictions with MINEQL+ 4.5. These results suggested that the discrepancies between speciation models were attributed to differences in the binding capacity of humic substances with Cu, where WHAM 6 appeared to be too aggressive. Therefore, we concluded that chemical interactions occurring between Cu and DOC were key factors for an accurate simulation of Cu speciation, especially in rhizospheric forest soils, where high variation of the DOC concentration and composition are observed.  相似文献   

8.
Effects of metal cations (Na+, Ca2+, and Al3+) on phenanthrene sorption were investigated using two soils with contrasting organic carbon (OC) contents. The presence of the polyvalent cations (i.e., Ca2+ or Al3+) at a concentration of 0.01 mol/L significantly increased the capacity and nonlinearity of phenanthrene sorption to soils compared with the monovalent Na+. The effects were governed by the content of soil OC. Rubbery OC (i.e., soft, amorphous OC including dissolved organic carbon (DOC)) tended to become condensed on soil surfaces as evidenced by a decrease in the signals of the 1H NMR spectra of DOC and an increase in the glass transition temperature (Tg) of the soils when the polyvalent cations were present. Increasing Ca2+ concentration led initially to an effect similar to that of the polyvalent cations in the low cation concentration range, and the effect was gradually attenuated as Ca2+ concentration further increased. These findings lead us to propose that the modifications in the physical configuration and chemical characteristics of OC resulting from the presence of metal cations account for the increase in the capacity and nonlinearity of phenanthrene sorption to the soils. This study points to an important role of metal cations in the sorption and fate of phenanthrene in the soil environment.  相似文献   

9.
Stable isotopic content of dissolved organic carbon (δ(13)C-DOC) provides valuable information on its origin and fate. In an attempt to get additional insights into DOC cycling, we developed a method for δ(13)C measurement of DOC size classes by coupling high-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) to online isotope ratio mass spectrometry (IRMS). This represents a significant methodological contribution to DOC research. The interface was evaluated using various organic compounds, thoroughly tested with soil-water from a C3-C4 vegetation change experiment, and also applied to riverine and marine DOC. δ(13)C analysis of standard compounds resulted in excellent analytical precision (≤0.3‰). Chromatography resolved soil DOC into 3 fractions: high molecular weight (HMW; 0.4-10 kDa), low molecular weight (LMW; 50-400 Da), and retained (R) fraction. Sample reproducibility for measurement of δ(13)C-DOC size classes was ±0.25‰ for HMW fraction, ± 0.54‰ for LMW fraction, and ±1.3‰ for R fraction. The greater variance in δ(13)C values of the latter fractions was due to their lower concentrations. The limit of quantification (SD ≤0.6‰) for each size fraction measured as a peak is 200 ng C (2 mg C/L). δ(13)C-DOC values obtained in SEC mode correlated significantly with those obtained without column in the μEA mode (p < 0.001, intercept 0.17‰), which rules out SEC-associated isotopic effects or DOC loss. In the vegetation change experiment, fractions revealed a clear trend in plant contribution to DOC; those in deeper soils and smaller size fractions had less plant material. It was also demonstrated that the technique can be successfully applied to marine and riverine DOC without further sample pretreatment.  相似文献   

10.
The acid/base properties of dissolved organic carbon (DOC) are an important feature of soil and surface waters. Large differences in the acid/base properties of DOC found by different studies might be interpreted as spatial and temporal differences in these properties. Different analytical techniques, however, may explain some of the differences. We used a combination of ion-exchange techniques, titration, and surface water chemistry data to evaluate DOC character from two substantially different areas--the relatively pristine boreal zone of Sweden and the heavily acidified temperate zone of the Czech Republic. We found a significantly higher site density (amount of carboxylic groups per milligram of DOC) for the Swedish sites (10.2 microequiv/mg of DOC +/- 0.6) as compared to the Czech sites (8.8 microequiv/mg of DOC +/- 0.5). This suggests a slightly higher buffering capacity for Swedish DOC. A triprotic model of a type commonly incorporated in biogeochemical models was used for estimating the DOC dissociation properties. For Swedish sites, the following constants were calibrated: pKa1 = 3.04, pKa2 = 4.51, and pKa3 = 6.46, while the constants for Czech sites were pKa1 = 2.5, pKa2 = 4.42, and pKa3 = 6.7. Despite differences in site density values, both models predict very similar dissociation and thus pH buffering by DOC in the environmentally important pH range of 3.5-5.0. This can be incorporated into models to make reliable estimates of the effect of organic acids on pH and buffering in different regions.  相似文献   

11.
河南烟区土壤有机碳组分特征及其对烟叶化学成分的影响   总被引:1,自引:0,他引:1  
为了明确河南典型烟区土壤有机碳库组分特征及其对烟叶化学成分含量(质量分数)的影响,采集分析了河南许昌、平顶山、洛阳和三门峡4个典型植烟区的土壤和烟叶样品.结果表明:①河南产区土壤总有机碳(TOC)、活性有机碳(AOC)、颗粒有机碳(POC)和溶解性有机碳(DOC)含量分布范围在3.72~13.80、0.26~0.74、...  相似文献   

12.
Copper is mobilized in soil by dissolved organic matter (DOM) but the role of DOM quality in this process is unclear. A one-step resin-exchange method was developed to measure the Cu-Mobilizing-Potential (CuMP) of DOM at pCu 11.3 and pH 7.0, representing background values. The CuMP of DOM was measured in soil solutions of 13 uncontaminated soils with different DOM extraction methods. The CuMP, expressed per unit dissolved organic carbon (DOC), varied 10-fold and followed the order water extracts > 0.01 M CaCl2 extracts > pore water. Soil solutions, obtained from soils that were stored air-dry for a long time or were subjected to drying-wetting cycles, had elevated DOC concentration, but the DOM had a low CuMP. Prolonged soil incubations decreased the DOC concentration and increased the CuMP, suggesting that most of the initially elevated DOM is less humified and has lower Cu affinity than DOM remaining after incubation. A significant positive correlation between the specific UV-absorption of DOM (indicating aromaticity) and CuMP was found for all DOM samples (R(2) = 0.58). It is concluded that the DOC concentration in soil is an insufficient predictor for the Cu mobilization and that DOM samples isolated from air-dried soils are distinct from those of soils kept moist.  相似文献   

13.
Organic matter is an important component of soil with regard to the binding of contaminants. Hence, the partitioning of organic matter influences the partitioning of soil contaminants. The partitioning of organic matter is, among other factors, influenced by the ionic composition and ionic strength of the soil solution. This study focuses on the behavior of organic matter after a change in the ionic composition of the soil solution, particularly in Ca concentration and pH. Different amounts of Ca(NO3)2 and NaOH were added to soil suspensions. The dissolved organic carbon (DOC) concentration increased with increasing pH (addition of NaOH), whereas an increase in Ca (addition of Ca(NO3)2) had the opposite effect. A stronger increase in DOC was observed if a single dose of NaOH was added, compared to a gradual addition of the same amount of NaOH. Cation binding by organic matter in the supernatant was calculated using the NICA-Donnan model. The log DOC concentration appeared to be correlated to the Donnan potential, calculated under the assumption that all DOC equals humic acid. This correlation was found for all eight neutral to acidic soils used in this study, although the slopes and elevations of the regression lines varied. The slope varied by a factor of 2 and the elevation appeared to be strongly influenced by the DOC concentration in the untreated soils, which is related to the total organic matter in the soil. Finally, we predicted the Donnan potential on the basis of an extraction of untreated soil with 0.03 M NaNO3, and the total additions of Ca(NO3)2 and NaOH. Comparison of these predictions with speciation calculations in solution showed a good correlation, indicating that a combination of one batch experiment and the presented calculation procedure can provide good estimations of DOC concentrations after addition of chemicals.  相似文献   

14.
Snow and ice have been implemented in a global multimedia box model to investigate the influence of these media on the environmental fate and long-range transport (LRT) of semivolatile organic compounds (SOCs). Investigated compounds include HCB, PCB28, PCB180, PBDE47, PBDE209, alpha-HCH, and dacthal. In low latitudes, snow acts as a transfer medium taking up chemicals from air and releasing them to water or soil during snowmelt. In high latitudes, snow and ice shield water, soil, and vegetation from chemical deposition. In the model version including snow and ice (scenario 2), the mass of chemicals in soil in high latitudes is between 27% (HCB) and 97% (alpha-HCH) of the mass calculated with the model version without snow and ice (scenario 1). Amounts in Arctic seawater in scenario 2 are 8% (alpha-HCH) to 21% (dacthal) of the amounts obtained in scenario 1. For all investigated chemicals except alpha-HCH, presence of snow and ice in the model increases the concentration in air by a factor of 2 (HCB)to 10 (PBDE209). Because of reduced net deposition to snow-covered surfaces in high latitudes, LRT to the Arctic is reduced for most chemicals whereas transport to the south is more pronounced than in scenario 1 ("southward shift"). The presence of snow and ice thus considerably changes the environmental fate of SOCs.  相似文献   

15.
The fate of arsenic in the aquatic environment is influenced by dissolved natural organic matter (DOM). Using an equilibrium dialysis method, conditional distribution coefficients (Dom) for As(III) and As(V) binding onto two commercial humic acids were determined at environmentally relevant As/dissolved organic carbon (DOC) ratios and as a function of pH. At all pH values, As(V) was more strongly bound than As(III). Maximum binding was observed around pH 7, which is consistent with H+ competition for binding sites at low pH values and OH- competition for the arsenic center at high pH. For both oxidation states, Dom values increased with decreasing As/DOC ratios. Dom values were fitted as a function of the As/DOC ratio for As(III) and As(V). Compared to the aquatic humic acid, the terrestrial humic acid had a higher affinity for arsenic binding with 1.5-3 times higher Dom values under the same conditions. Al3+ in excess to arsenic successfully competed for strong binding sites at low As/DOC ratios. Under environmentally relevant conditions, about 10% of total As(V) may be bound to DOM, whereas >10% of As(III) is bound to DOM at very low As/DOC ratios only. Binding of arsenic to DOM should be considered in natural systems.  相似文献   

16.
Modeling kinetics of Cu and Zn release from soils   总被引:1,自引:0,他引:1  
Kinetics of Cu and Zn release from soil particles was studied using two surface soils with a stirred-flow method. Different solution pH, dissolved organic matter (DOM) concentrations, and flow rates were tested in this study. A model for kinetics controlled sorption/desorption reactions between soils and solutions was globally fit to all experimental data simultaneously. Results were compared to a model that assumes local instantaneous equilibrium. We obtained one unique set of model parameters applicable to different pH, dissolved organic carbon (DOC), and flow conditions. We included DOM complexation of copper ions, which decreased their sorption. The effect of pH was included by assuming proton competition with metal ions for binding sites on soil particles. These results provide the basis for developing predictive models for metal release from soil particles to surface waters and soil solution.  相似文献   

17.
The prevalent use of soil fumigants has resulted in air pollution in some agricultural regions. Our previous research showed that application of thiosulfate fertilizers at the soil surface may offer an effective and economical approach to reduce the emission of halogenated fumigants via a chemical remediation process. In this fumigant emission-reduction strategy, volatile 1,3-dichloropropene (1,3-D) reacts with thiosulfate to generate a nonvolatile Bunte salt (thiosulfate derivative of 1,3-D). However, the decomposition of the Bunte salt may be associated with the production of perceptible odors. This study investigated the stability of this reaction product in different environmental media. Hydrolysis experiments demonstrated that the thiosulfate derivative was relatively stable in neutral and moderately acidic aqueous solutions. In contrast, the thiosulfate derivative was readily converted to a dialkyl disulfide via a base hydrolysis process in pH 10 buffer solution. In a strongly acidic solution, a mercaptan and a dialkyl disulfide compound were detected as two primary hydrolysis products. In soil, this initial reaction product underwent a series of biotic conversions to generate several volatile or semivolatile organic sulfur compounds. The formation and distribution of four volatile/semivolatile products in the air and soil were detected in different soils treated with the thiosulfate derivative of 1,3-D. This study indicated that odors occurring in soil treated with halogenated fumigants and thiosulfate fertilizers might arise from the generation and release of these and other volatile/semivolatile organic sulfur products. The environmental fate and effects of such volatile/semivolatile sulfur compounds should be considered in the application of sulfur-containing fertilizers in fumigated fields.  相似文献   

18.
Simulating the influence of snow on the fate of organic compounds   总被引:2,自引:0,他引:2  
Snow scavenging, a seasonal snowpack, and a dynamic water balance are incorporated in a non-steady-state generic multimedia fate model in order to investigate the effect of snow on the magnitude and temporal variability of organic contaminant concentrations in various environmental media. Efficient scavenging of large nonpolar organic vapors and particle-bound organic chemicals by snow can lead to reduced wintertime air concentrations and incorporation in the snowpack. The snow cover functions as a temporary storage reservoir that releases contaminants accumulating over the winter during a short melt period, resulting in temporarily elevated concentrations in air, water, and soil. The intensity of these peaks increases with the length of the snow accumulation period. Organic chemicals of sufficient volatility (log KOA < 9; e.g., light polychlorinated biphenyls) can volatilize from the snowpack, resulting in springtime concentration maxima in the atmosphere. The behavior of fairly water-soluble chemicals during snowmelt depends on their relative affinity for the newly formed liquid water phase and the rapidly diminishing ice surface-quantitatively expressed by their interface-water partition coefficient (KIW). Chemicals with a preference for the dissolved phase (low KIW; e.g., pentachlorophenol) can become enriched in the first meltwater fractions and experience a temporary concentration peak in lakes and rivers. Organic chemicals that are neither volatile enough to evaporate from the snowpack nor sufficiently water soluble to dissolve in the meltwater (e.g., polybrominated diphenyl ethers) sorb to the particles in the snowpack. These particles may be sufficiently contaminated to constitute the major input route to the terrestrial environment upon release during snowmelt. Because wintertime deposition to the snowpack may be higher than to a non-snow covered surface, this can result in higher soil concentrations of persistent organic contaminants in the long term. The potential ecotoxicological significance of peak exposures demands a better understanding of the role of snow in the fate of organic contaminants.  相似文献   

19.
The association between protists, bacteria, and dissolved organic carbon (DOC) in an oxygen-depleted, 6 km-long wastewater contaminant plume within a sandy aquifer (Cape Cod, MA) was investigated by comparing abundance patterns along longitudinal and vertical transects and at a control site. Strong linear correlations were observed between unattached bacterial abundance and DOC for much of the upgradient-half of the plume (0.1-2.5 km downgradient from the source) that is characterized by quasi-steady state chemistry. However, a logarithmic decrease was observed between the number of protists supported per mg of DOC and the estimated age of the DOC within the plume. The relatively labile dissolved organic contaminants that characterize the groundwater sampled from the plume < or = 0.1 km downgradient from the contaminant source appeared to indirectly support 3-4 times as many protists (per mg of DOC) as the older, more recalcitrant DOC in the alkylbenzene sulfonate (ABS)-contaminated zone at 3 km downgradient (approximately 30 years travel time). Substantive numbers of protists (>10(4)/cm3) were recovered from suboxic zones of the plume. The higher than expected ratios of protists to unattached bacteria (10 to 100:1) observed in much of the plume suggest that protists may be grazing upon both surface-associated and unattached bacterial communities to meet their nutritional requirements. In closed bottle incubation experiments, the presence of protists caused an increase in bacterial growth rate, which became more apparent at higher amendments of labile DOC (3-20 mgC/L). The presence of protists resulted in an increase in the apparent substrate saturation level for the unattached bacterial community, suggesting an important role for protists in the fate of more-labile aquifer organic contaminants.  相似文献   

20.
Pesticides in western Canadian mountain air and soil   总被引:6,自引:0,他引:6  
The distribution of organochlorine pesticides (OCP; in past and current use) in the mountains of western Canada was determined by sampling air, soil, and lichen along three elevational transects in 2003-2004. Two transects west of the Continental Divide were located in Mount Revelstoke and Yoho National Park, while the Observation Peak transect in Banff National Park is east of the divide. XAD-based passive air samplers, yielding annually averaged air concentrations, were deployed, and soils were collected at all 22 sampling sites, whereas lichen were only sampled in Revelstoke. Back trajectory analysis showed limited air mass transport from the Prairies to the east, but a high frequency of air arriving from the southwest, which includes agricultural regions in British Columbia and Washington State. Endosulfan, dieldrin, and a-hexachlorocyclohexane were the most prevalent OCPs in air and soil; hexachlorobenzene was only abundant in air; chlorothalonil, dacthal, and pentachloronitrobenzene were also consistently present. OCP air concentrations were similar across the three transects, suggesting efficient atmospheric mixing on a local and regional scale. Soil concentrations and soil/air concentration ratios of many OCPs were significantly higher west of the Continental Divide. The soil and lichen concentrations of most OCPs increased with altitude in Revelstoke, and displayed maxima at intermediate elevations at Yoho and Observation Peak. These distribution patterns can be understood as being determined by the balance between atmospheric deposition to, and retention within, the soils. Higher deposition, due to more precipitation falling at lower temperatures, likely occurs west of the divide and at higher elevations. Higher retention, due to higher soil organic matter content, is believed to occur in soils below the tree line. Highest pesticide concentrations are thus found intemperate mountain soils that are rich in organic matter and receive large amounts of cold precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号