首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers input affine nonlinear systems with matched disturbances and shows how to compute an a priori upper bound of the H attenuation level achieved by the optimal L2 controller and the suboptimal H central controller. The case where the disturbance contains a constant term is also discussed. These bounds are shown to depend only on the function mapping the control input to the performance variable. This result is used to derive a robust control design for a special, but practically important, class of non-input affine nonlinear systems consisting of the series connection of a nonlinear state and input dependent map and of a nonlinear input affine dynamical system. Approximate inversion of the nonlinear static map leads to a robust control problem which fits into the framework. The effectiveness of the theoretical results is shown by its use for the robust control design of a diesel engine test bench.  相似文献   

2.
In this paper we discuss a frequency domain approach to model multirate single-input single-output (SISO) systems which facilitates design of linear time-invariant (LTI) controllers operating at the fast rate. To illustrate the approach we consider a dual-rate system with slow output measurements and fast control actions. We obtain necessary and sufficient conditions for the existence of stabilizing linear time-invariant (LTI) controllers for which model matching is also achieved at the fast rate with a desired single-rate system. Moreover, a solution to the problem of parameterizing the set of such LTI controllers is also given.  相似文献   

3.
In this paper, the optimal strategies for discrete-time linear system quadratic zero-sum games related to the H-infinity optimal control problem are solved in forward time without knowing the system dynamical matrices. The idea is to solve for an action dependent value function Q(x,u,w) of the zero-sum game instead of solving for the state dependent value function V(x) which satisfies a corresponding game algebraic Riccati equation (GARE). Since the state and actions spaces are continuous, two action networks and one critic network are used that are adaptively tuned in forward time using adaptive critic methods. The result is a Q-learning approximate dynamic programming (ADP) model-free approach that solves the zero-sum game forward in time. It is shown that the critic converges to the game value function and the action networks converge to the Nash equilibrium of the game. Proofs of convergence of the algorithm are shown. It is proven that the algorithm ends up to be a model-free iterative algorithm to solve the GARE of the linear quadratic discrete-time zero-sum game. The effectiveness of this method is shown by performing an H-infinity control autopilot design for an F-16 aircraft.  相似文献   

4.
This paper is concerned with the problems of robust H and H2 filtering for 2-dimensional (2-D) discrete-time linear systems described by a Fornasini-Marchesini second model with matrices that depend affinely on convex-bounded uncertain parameters. By a suitable transformation, the system is represented by an equivalent difference-algebraic representation. A parameter-dependent Lyapunov function approach is then proposed for the design of 2-D stationary discrete-time linear filters that ensure either a prescribed H performance or H2 performance for all admissible uncertain parameters. The filter designs are given in terms of linear matrix inequalities. Numerical examples illustrate the effectiveness of the proposed filter design methods.  相似文献   

5.
In this paper, the problem of worst case (also called H) Control for a class of uncertain systems with Markovian jump parameters and multiple delays in the state and input is investigated. The jumping parameters are modelled as a continuous-time, discrete-state Markov process and the parametric uncertainties are assumed to be real, time-varying and norm-bounded that appear in the state, input and delayed-state matrices. The time-delay factors are unknowns and time-varying with known bounds. Complete results for instantaneous and delayed state feedback control designs are developed which guarantee the weak-delay dependent stochastic stability with a prescribed H-performance. The solutions are provided in terms of a finite set of coupled linear matrix inequalities (LMIs). Application of the developed theory to a typical example has been presented.  相似文献   

6.
This paper is concerned with the networked control system design for continuous-time systems with random measurement, where the measurement channel is assumed to subject to random sensor delay. A design scheme for the observer-based output feedback controller is proposed to render the closed-loop networked system exponentially mean-square stable with H performance requirement. The technique employed is based on appropriate delay systems approach combined with a matrix variable decoupling technique. The design method is fulfilled through solving linear matrix inequalities. A numerical example is used to verify the effectiveness and the merits of the present results.  相似文献   

7.
The paper addresses the problem of analysis and static output feedback control synthesis for strict quadratic dissipativity of linear time-invariant systems with state-space symmetry. As a particular case of dissipative systems, we consider the mixed H and positive real performance criterion and we develop an explicit expression for calculating the H norm of these systems. Subsequently, an explicit parametrization of the static output feedback control gains that solve the mixed H and positive real performance problem is obtained. Numerical examples demonstrate the use and computational advantages of the proposed explicit solutions.  相似文献   

8.
This paper investigates simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian (PCH) systems and proposes a number of results on the design of simultaneous stabilization controllers for the PCH systems. Firstly, the case of two PCH systems is studied. Using the dissipative Hamiltonian structural properties, the two systems are combined to generate an augmented PCH system, with which some results on the control design are then obtained. For the case that there exist parametric uncertainties in the two systems’ Hamiltonian structures, an adaptive simultaneous stabilization controller is proposed. When there are external disturbances and parametric uncertainties in the two systems, two simultaneous stabilization controllers are designed for the systems: one is a robust controller and the other is a robust adaptive one. Secondly, the case of more than two PCH systems is investigated, and a new result is proposed for the simultaneous stabilization of the systems. Finally, two illustrative examples are studied by using the results proposed in this paper. Simulations show that the simultaneous stabilization controllers obtained in this paper work very well.  相似文献   

9.
This paper presents an approximate multi-parametric Nonlinear Programming (mp-NLP) approach to explicit solution of feedback min-max NMPC problems for constrained nonlinear systems in the presence of bounded disturbances and/or parameter uncertainties. It is based on an orthogonal search tree structure of the state space partition and consists in constructing a piecewise nonlinear (PWNL) approximation to the optimal sequence of feedback control policies. Conditions guaranteeing the robust stability of the closed-loop system in terms of a finite l2-gain are derived.  相似文献   

10.
This article introduces a novel distributed controller approach for networked control systems (NCS) to achieve finite gain L2 stability independent of constant time delay. The proposed approach represents a generalization of the well-known scattering transformation which applies for passive systems only. The main results of this article are (a) a sufficient stability condition for general multi-input-multi-output (MIMO) input-feedforward-output-feedback-passive (IF-OFP) nonlinear systems and (b) a necessary and sufficient stability condition for linear time-invariant (LTI) single-input-single-output (SISO) systems. The performance advantages of the proposed approach are reduced sensitivity to time delay and improved steady state error compared to alternative known delay-independent small gain type approaches. Simulations validate the proposed approach.  相似文献   

11.
We propose two approximate dynamic programming (ADP)-based strategies for control of nonlinear processes using input-output data. In the first strategy, which we term ‘J-learning,’ one builds an empirical nonlinear model using closed-loop test data and performs dynamic programming with it to derive an improved control policy. In the second strategy, called ‘Q-learning,’ one tries to learn an improved control policy in a model-less manner. Compared to the conventional model predictive control approach, the new approach offers some practical advantages in using nonlinear empirical models for process control. Besides the potential reduction in the on-line computational burden, it offers a convenient way to control the degree of model extrapolation in the calculation of optimal control moves. One major difficulty associated with using an empirical model within the multi-step predictive control setting is that the model can be excessively extrapolated into regions of the state space where identification data were scarce or nonexistent, leading to performances far worse than predicted by the model. Within the proposed ADP-based strategies, this problem is handled by imposing a penalty term designed on the basis of local data distribution. A CSTR example is provided to illustrate the proposed approaches.  相似文献   

12.
In this paper, bounded-real conditions for affine nonlinear state-delayed systems are derived using the concept of dissipativeness. Necessary and sufficient conditions for the system to be dissipative and to have finite L2-gain also referred to as the bounded-real condition are given. The implications on the stability of the system and feedback interconnections of such systems are also considered. Finally, an equivalent of the positive-real lemma is derived and its implications on stability of the system and feedback interconnections of such systems are similarly discussed.  相似文献   

13.
This article is concerned with robust stability analysis of discrete-time systems and introduces a novel and powerful technique that we call noncausal linear periodically time-varying (LPTV) scaling. Based on the discrete-time lifting together with the conventional but general scaling approach, we are led to the notion of noncausal LPTV scaling for LPTV systems, and its effectiveness is demonstrated with a numerical example. To separate the effect of noncausal and LPTV characteristics of noncausal LPTV scaling to see which is a more important source leading to the effectiveness, we then consider the case of LTI systems as a special case. Then, we show that even static noncausal LPTV scaling has an ability of inducing frequency-dependent scaling when viewed in the context of the conventional LTI scaling, while causal LPTV scaling fails to do so. It is further discussed that the effectiveness of noncausal characteristics leading to the frequency-domain interpretation can be exploited even for LPTV systems by considering the νN-lifted transfer matrices of N-periodic systems.  相似文献   

14.
Trajectory generation for nonlinear control systems is an important and difficult problem. In this paper, we provide a constructive method for hierarchical trajectory refinement. The approach is based on the recent notion of φ-related control systems. Given a control affine system satisfying certain assumptions, we construct a φ-related control system of smaller dimension. Trajectories designed for the smaller, abstracted system are guaranteed, by construction, to be feasible for the original system. Constructive procedures are provided for refining trajectories from the coarser to the more detailed system.  相似文献   

15.
In this paper, sampled-data control of a set of continuous-time LTI systems is considered. It is assumed that a predefined guaranteed continuous-time quadratic cost function, which is, in fact, the sum of the performance indices for all systems, is given. The main objective here is to design a decentralized periodic output feedback controller with a prespecified form, e.g., polynomial, piecewise constant, exponential, etc., which minimizes the above mentioned guaranteed cost function. This problem is first formulated as a set of matrix inequalities, and then by using a well-known technique, it is reformulated as a LMI problem. The set of linear matrix inequalities obtained provides necessary and sufficient conditions for the existence of a decentralized optimal simultaneous stabilizing controller with the prespecified form (rather than a general form). Moreover, an algorithm is presented to solve the resultant LMI problem. Finally, the efficiency of the proposed method is demonstrated in two numerical examples.  相似文献   

16.
This paper studies the problem of state feedback control of continuous-time T-S fuzzy systems. Switched fuzzy controllers are exploited in the control design, which are switched based on the values of membership functions, and the control scheme is an extension of the parallel distributed compensation (PDC) scheme. Sufficient conditions for designing switched state feedback controllers are obtained with meeting an H norm bound requirement and quadratic D stability constraints. It is shown that the new control design method provides less conservative results than the corresponding ones via the parallel distributed compensation (PDC) scheme. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

17.
Stability of linear systems with uncertain bounded time-varying delays is studied under the assumption that the nominal delay values are not equal to zero. An input-output approach to stability of such systems is known to be based on the bound of the L2-norm of a certain integral operator. There exists a bound on this operator norm in two cases: in the case where the delay derivative is not greater than 1 and in the case without any constraints on the delay derivative. In the present note we fill the gap between the two cases by deriving a tight operator bound which is an increasing and continuous function of the delay derivative upper bound d?1. For d→∞ the new bound corresponds to the second case and improves the existing bound. As a result, for the first time, delay-derivative-dependent frequency domain and time domain stability criteria are derived for systems with the delay derivative greater than 1.  相似文献   

18.
The guaranteed cost control problem for multimodeling systems with norm bounded uncertainty is investigated. The main contribution in this paper is that a new ?-independent controller is derived by solving the reduced-order slow and fast algebraic Riccati equations (AREs) whose dimension is smaller than the dimension of full-order multiparameter algebraic Riccati equation (MARE). It is shown that if these AREs have a positive definite stabilizing solution then the closed-loop system is quadratically stable and has the cost bound.  相似文献   

19.
This paper considers robust stochastic stability, stabilization and H control problems for a class of jump linear systems with time delays. By using some zero equations, neither model transformation nor bounding for cross terms is required to obtain the delay-dependent results, which are given in terms of linear matrix inequalities (LMIs). Maximum sizes of time delays are also studied for system stability. Furthermore, solvability conditions and corresponding H control laws are given which provide robust stabilization with a prescribed H disturbance attenuation level. Numerical examples show that the proposed methods are much less conservative than existing results.  相似文献   

20.
Shaosheng Zhou  Gang Feng 《Automatica》2008,44(7):1918-1922
This paper investigates an H filtering problem for discrete-time systems with randomly varying sensor delays. The stochastic variable involved is a Bernoulli distributed white sequence appearing in measured outputs. This measurement mode can be used to characterize the effect of communication delays and/or data-loss in information transmissions across limited bandwidth communication channels over a wide area. H filtering of this class of systems is used to design a filter using the measurements with random delays to ensure the mean-square stochastic stability of the filtering error system and to guarantee a prescribed H filtering performance. A sufficient condition for the existence of such a filter is presented in terms of the feasibility of a linear matrix inequality (LMI). Finally, a numerical example is given to illustrate the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号