首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we present a fault-tolerant control scheme for linear parameter-varying systems that utilises multiple sensor switching to compensate for sensor faults. The closed-loop scheme consists of an estimator-based feedback tracking controller and sensor-estimate switching strategy which allows for the reintegration of previously faulty sensors. The switching mechanism tracks the transitions from faulty to healthy behaviour by means of set separation and pre-computed transition times. The sensor-estimate pairings are then reconfigured based on available healthy sensors. Under the proposed scheme, preservation of closed-loop system boundedness is guaranteed for a wide range of sensor fault situations. An example is presented to illustrate the performance of the fault-tolerant control strategy.  相似文献   

2.
In this paper, a multisensor fusion fault tolerant control system with fault detection and identification via set separation is presented. The fault detection and identification unit verifies that for each sensor–estimator combination, the estimation tracking errors lie inside pre-computed sets and discards faulty sensors when their associated estimation tracking errors leave the sets. An active fault tolerant controller is obtained, where the remaining healthy estimates are combined using a technique based on the optimal fusion criterion in the linear minimum-variance sense. The fused estimates are then used to implement a state feedback tracking controller. We ensure closed-loop stability and performance under the occurrence of abrupt sensor faults. Experimental validation, illustrating the multisensor fusion fault tolerant control strategy is included.  相似文献   

3.
In this paper, we present a robust fault‐tolerant control scheme for constrained multisensor linear parameter‐varying systems, subject to bounded disturbances, that utilises multiple sensor fusion. The closed‐loop scheme consists of a tube model predictive control‐based feedback tracking controller and sensor‐estimate fusion strategy, which allows for the reintegration of previously faulty sensors. The active fault‐tolerant fusion‐based mechanism tracks the healthy‐faulty transitions of suitable residual variables by means of set separation and precomputed transition times. The sensor‐estimate pairings are then reconfigured based on available healthy sensors. Under the proposed scheme, robust preservation of closed‐loop system boundedness is guaranteed for a wide range of sensor fault situations. An example is presented to illustrate the performance of the fault‐tolerant control strategy.  相似文献   

4.
A non-approximation-based output feedback control strategy for a class of switched large-scale nonlinear systems with quantized inputs and sensor uncertainties is proposed. A dynamic gain, which is shared by the state observers and controllers of all the subsystems, is designed so that the effects of sensor uncertainties, quantized inputs, unknown parameters, and external disturbances can be compensated. By constructing some common Lyapunov functions (CLFs) shared by the switched systems, it is proved that with the proposed scheme, the closed-loop system stability can be guaranteed under arbitrary switching, and the outputs of all the subsystems can be steered to within arbitrarily small neighborhoods of the origin.  相似文献   

5.
The present paper deals with the interplay between healthy and faulty sensor functioning in a multisensor scheme based on a switching control strategy. Fault tolerance guarantees have been recently obtained in this framework based upon the characterisation of invariant sets for state estimations in healthy and faulty functioning. A source of conservativeness of this approach is related to the issue of sensor recovery. A common working hypothesis has been to assume that once a sensor switches to faulty functioning it can no longer be used by the control mechanism even if at an ulterior moment it switches back to healthy functioning. In the current paper, we present necessary and sufficient conditions for the acknowledgement of sensor recovery and we propose and compare different techniques for the reintegration of sensors in the closed-loop decision-making mechanism.  相似文献   

6.
For an $N$-dimensional quantum system under the influence of continuous measurement, this paper presents a switching control scheme where the control law is of bang-bang type and achieves asymptotic preparation of an arbitrarily given eigenstate of a non-degenerate and degenerate measurement operator, respectively. In the switching control strategy, we divide the state space into two parts: a set containing a target state, and its complementary set. By analyzing the stability of the stochastic system model under consideration, we design a constant control law and give some conditions that the control Hamiltonian satisfies so that the system trajectories in the complementary set converge to the set which contains the target state. Further, for the case of a non-degenerate measurement operator, we show that the system trajectories in the set containing the target state will automatically converge to the target state via quantum continuous measurement theory; while for the case of a degenerate measurement operator, the corresponding system trajectories will also converge to the target state via the construction of the control Hamiltonians. The convergence of the whole closed-loop systems under the cases of a non-degenerate and a degenerate measurement operator is strictly proved. The effectiveness of the proposed switching control scheme is verified by the simulation experiments on a finite-dimensional angular momentum system and a two-qubit system.  相似文献   

7.
Output feedback control of nonlinear systems subject to sensor data losses   总被引:2,自引:0,他引:2  
In this work, we focus on output feedback control of nonlinear systems subject to sensor data losses. We initially construct an output feedback controller based on a combination of a Lyapunov-based controller with a high-gain observer. We then study the stability and robustness properties of the closed-loop system in the presence of sensor data losses for both the continuous and sampled-data systems. We state a set of sufficient conditions under which the closed-loop system is guaranteed to be practically stable. The theoretical results are demonstrated using a chemical process example.  相似文献   

8.
This work presents a hybrid nonlinear control methodology for a broad class of switched nonlinear systems with input constraints. The key feature of the proposed methodology is the integrated synthesis, via multiple Lyapunov functions, of “lower-level” bounded nonlinear feedback controllers together with “upper-level” switching laws that orchestrate the transitions between the constituent modes and their respective controllers. Both the state and output feedback control problems are addressed. Under the assumption of availability of full state measurements, a family of bounded nonlinear state feedback controllers are initially designed to enforce asymptotic stability for the individual closed-loop modes and provide an explicit characterization of the corresponding stability region for each mode. A set of switching laws are then designed to track the evolution of the state and orchestrate switching between the stability regions of the constituent modes in a way that guarantees asymptotic stability of the overall switched closed-loop system. When complete state measurements are unavailable, a family of output feedback controllers are synthesized, using a combination of bounded state feedback controllers, high-gain observers and appropriate saturation filters to enforce asymptotic stability for the individual closed-loop modes and provide an explicit characterization of the corresponding output feedback stability regions in terms of the input constraints and the observer gain. A different set of switching rules, based on the evolution of the state estimates generated by the observers, is designed to orchestrate stabilizing transitions between the output feedback stability regions of the constituent modes. The differences between the state and output feedback switching strategies, and their implications for the switching logic, are discussed and a chemical process example is used to demonstrate the proposed approach.  相似文献   

9.
研究基于特征结构配置的二阶线性系统鲁棒容错控制设计问题,目的是重新设计状态反馈控制律,使得故障闭环系统和正常闭环系统具有相同的特征值.两闭环系统的特征向量依最小二乘法接近,而且能通过极小化灵敏度指标提高系统的鲁棒性.基于状态反馈特征结构配置的参数化结果,将系统灵敏度指标优化问题转化为含有约束条件的优化问题,并提出了鲁棒容错控制设计方法.数值算例及其仿真结果验证了所提出设计方法的有效性.  相似文献   

10.
This paper is devoted to stability analysis and control design of switched linear systems in both continuous and discrete-time domains. A particular class of matrix inequalities, the so-called Lyapunov--Metzler inequalities, provides conditions for open-loop stability analysis and closed-loop switching control using state and output feedback. Switched linear systems are analyzed in a general framework by introducing a quadratic in the state cost determined from a series of impulse perturbations. Lower bounds on the cost associated with the optimal switching control strategy are derived from the determination of a feasible solution to the Hamilton--Jacobi--Bellman inequality. An upper bound on the optimal cost associated with a closed-loop stabilizing switching strategy is provided as well. The solution of the output feedback problem is based on the construction of a full-order linear switched filter whose state variable is used by the mechanism for the determination of the switching rule. Throughout, the theoretical results are illustrated by means of academic examples. A realistic practical application related to the optimal control of semiactive suspensions in road vehicles is reported.  相似文献   

11.
The paper shows that a control strategy with disturbance rejection is able to reduce the control effort to a minimum, ensuring at the same time a desired performance level. The disturbance to be rejected is completely unknown, except for a sectorial bound. The control unit is endowed with an extended state observer which includes a disturbance dynamics, whose state tracks the unknown disturbance to be rejected. In summary, the novel contributions of the paper are the following. First, we derive a robust stability condition for the proposed control scheme, holding for all the nonlinearities that are bounded by a known (or estimated) maximum slope. Second, we propose a novel approach for designing the observer and state feedback gains, which guarantee robust closed-loop stability. Third, we show that the designed control system yields, with a minimum control effort, the same control performance as a robust state feedback control, which on the contrary may require a larger command activity. Two simulated case studies are presented to show the effectiveness of the proposed approach.  相似文献   

12.
李炜  赵静 《计算机仿真》2006,23(8):283-285,310
容错控制是使设计的控制系统能对可能发生的故障具有一定的容错能力,该问题直接关系到控制系统运行的可靠性和安全性。该文基于Lyapunov稳定性理论和Riccati方程,针对线性离散一步时滞系统,引入一步时滞状态反馈,研究了传感器失效后有一定性能保证的D稳定容错控制问题,在给出对传感器失效具有完整性的D稳定容错控制系统需满足的一个充分条件的基础上,进而给出控制器的设计方法和步骤,并推广至执行器失效情况,仿真实验验证了该方法的有效性,与引入状态反馈控制律相比,此方法有更好的动态平稳性。  相似文献   

13.
14.
This paper studies design and implementation of an enhanced multivariable adaptive control scheme for an uncertain nonlinear process exposed to actuator faults. For adaptive fault compensation, a model reference adaptive control (MRAC) strategy is utilized as main controller. A new adaptation algorithm making possible to improve transient performance of adaptive control is integrated to the controller. With the help of further modifications, some restrictive conditions on multivariable adaptive design are relaxed so that the system requires less plant information. The resulting controller has a simpler structure than the other matrix factorization based controllers. At the final stage of design, a robust adaptive control scheme is obtained with consideration of practical implementation problems such as sensor noises, external disturbances and unmodeled​ system dynamics. It is proved that the controller guarantees closed-loop signal boundedness and asymptotic output tracking. Real-time experiment results acquired from quadruple tank benchmark system are presented in order to exhibit the effectiveness of the proposed scheme.  相似文献   

15.
李庆奎  李梅  贾新春 《自动化学报》2015,41(12):2081-2091
研究具有 Markov 跳变参数的闭环供应链(Closed-loop supply chain, CLSC)切换系 统建模以及具有抑制牛鞭效应的H∞控制问题. 针对再制造过程中的不确定性问题, 在考虑库存衰减因素的条件下, 根据库存水平的不同状态将系统建模为切换系统, 子系统间的切换服从 于一个Markov过程. 基于输入滞后的控制策略, 应用Markov切换思想对 系统进行控制器设计与性能分析, 在保证闭环供应链系统稳定的情形 下有效抑制牛鞭效应. 仿真例子说明所得结果的有效性.  相似文献   

16.
17.
楼旭阳  叶倩 《自动化学报》2014,40(5):862-874
混杂系统的鲁棒镇定是复杂控制系统领域的重要研究课题之一.提出了一种编码机制下的混杂控制策略,它能有效地克服传统连续反馈控制或不连续反馈控制在处理局部鲁棒镇定平衡点或不变集问题中的局限性,获得更好的控制效果.首先针对编码状态反馈,构建了一般的混杂系统模型来描述编码状态反馈作用下非线性系统的闭环系统模型.然后,基于逆Lyapunov定理开展了非线性系统的混杂控制鲁棒性分析,提出了闭环混杂系统的半全局实用渐近稳定性判据.最后,结合一个经典控制问题来说明所提出控制策略的优越性.  相似文献   

18.
针对一类约束多传感器线性故障系统,提出了一种基于鲁棒预测控制策略的容错控制方案.首先为多传感器线性系统设计了观测器,然后离线设计不变集列,使得时变的状态估计误差存在于相应的不变集列中,利用不变集的理论提出了一种新的故障检测的方法,最后基于鲁棒预测控制策略为故障系统设计了容错控制器,给出了闭环系统鲁棒稳定性的证明.仿真结果证明了方法的可行性。  相似文献   

19.
In this paper, we focus on the problem of adaptive stabilization for a class of uncertain switched nonlinear systems, whose non-switching part consists of feedback linearizable dynamics. The main result is that we propose adaptive controllers such that the considered switched systems with unknown parameters can be stabilized under arbitrary switching signals. First, we design the adaptive state feedback controller based on tuning the estimations of the bounds on switching parameters in the transformed system, instead of estimating the switching parameters directly. Next, by incorporating some augmented design parameters, the adaptive output feedback controller is designed. The proposed approach allows us to construct a common Lyapunov function and thus the closed-loop system can be stabilized without the restriction on dwell-time, which is needed in most of the existing results considering output feedback control. A numerical example and computer simulations are provided to validate the proposed controllers.  相似文献   

20.
This paper is concerned with the fault detection and control problem for discrete-time switched systems. The actuator faults, especially ‘outage cases’, are considered. The detector/controller is designed simultaneously such that the closed-loop system switches under an average dwell time, and when a fault is detected, an alarm is generated and then the controller is switched to allow the norm of the states of the subsystem to increase within the acceptable limits. Thus, a switching strategy which combines average dwell time switching with event-driven switching is proposed. Under this switching strategy, the attention is focused on designing the detector/controller such that estimation errors between residual signals and faults are minimised for the fulfillment of fault detection objectives; simultaneously, the closed-loop system becomes asymptotically stable for the fulfillment of control objectives. A two-step procedure is adopted to obtain the solutions through satisfying a set of linear matrix inequalities. An example comprising of three cases is considered. Through these cases, it is demonstrated that the fault detection and control for switched systems using a two-stage switching strategy and asynchronous switching are feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号