共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高系统的通信效率和能源利用率,减少多自主体系统硬件资源的浪费,提出了只需要自主体自身及其最近邻居节点信息的分布式事件触发控制算法。研究了带有动态领导者的二阶多自主体系统领导跟随一致性问题。应用矩阵论和现代控制理论研究了在分布式事件触发机制下的二阶系统,得到了基于事件触发机制的多自主体系统协同运动的收敛条件。通过理论分析与计算表明,在此控制协议下不会存在芝诺行为,并且多自主体系统可以实现领导跟随一致性。最后,应用计算机仿真验证了本文所提控制协议的可靠性。 相似文献
2.
Tracking control for multi-agent consensus with an active leader and variable topology 总被引:6,自引:0,他引:6
In this paper, we consider a multi-agent consensus problem with an active leader and variable interconnection topology. The state of the considered leader not only keeps changing but also may not be measured. To track such a leader, a neighbor-based local controller together with a neighbor-based state-estimation rule is given for each autonomous agent. Then we prove that, with the proposed control scheme, each agent can follow the leader if the (acceleration) input of the active leader is known, and the tracking error is estimated if the input of the leader is unknown. 相似文献
3.
This paper considers the distributed consensus problem of linear multi-agent systems subject to different matching uncertainties for both the cases without and with a leader of bounded unknown control input. Due to the existence of nonidentical uncertainties, the multi-agent systems discussed in this paper are essentially heterogeneous. For the case where the communication graph is undirected and connected, based on the local state information of neighboring agents, a fully distributed continuous adaptive consensus protocol is designed, under which the consensus error is uniformly ultimately bounded and exponentially converges to a small adjustable bounded set. For the case where there exists a leader whose control input is unknown and bounded, a distributed adaptive consensus protocol is proposed to ensure the boundedness of the consensus error. A sufficient condition for the existence of the proposed protocols is that each agent is stabilizable. 相似文献
4.
In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method. 相似文献
5.
This paper presents an algorithm and analysis of distributed learning and cooperative control for a multi-agent system so that a global goal of the overall system can be achieved by locally acting agents. We consider a resource-constrained multi-agent system, in which each agent has limited capabilities in terms of sensing, computation, and communication. The proposed algorithm is executed by each agent independently to estimate an unknown field of interest from noisy measurements and to coordinate multiple agents in a distributed manner to discover peaks of the unknown field. Each mobile agent maintains its own local estimate of the field and updates the estimate using collective measurements from itself and nearby agents. Each agent then moves towards peaks of the field using the gradient of its estimated field while avoiding collision and maintaining communication connectivity. The proposed algorithm is based on a recursive spatial estimation of an unknown field. We show that the closed-loop dynamics of the proposed multi-agent system can be transformed into a form of a stochastic approximation algorithm and prove its convergence using Ljung’s ordinary differential equation (ODE) approach. We also present extensive simulation results supporting our theoretical results. 相似文献
6.
In this paper a novel problem of adaptive awareness coverage is formulated. We model the mission domain using a density function which characterizes the importance of each point and is unknown beforehand. The desired awareness coverage level over the mission domain is defined as a non-decreasing differentiable function of the density distribution. A decentralized adaptive control strategy is developed to accomplish the awareness coverage task and learning task simultaneously. The proposed control law is memoryless and can guarantee the achievement of satisfactory awareness coverage of the mission domain in finite time with the approximation error of the density function converging to zero. 相似文献
7.
In this paper, we consider the leader-following consensus problem for a multiple rigid spacecraft system whose attitude is represented by the unit quaternion. Most results on this problem rely on the assumption that every follower can access the state of the leader and are obtained via a decentralized control manner. By developing a nonlinear distributed observer for the leader system, we can solve this problem via a distributed control scheme under the mild assumptions that the state of the leader can reach every follower through a path and that the communication between followers is bidirectional. Moreover, our result can accommodate a class of desired angular velocities generated by a marginally stable linear autonomous system. 相似文献
8.
9.
This paper aims to find a simple but efficient method for consensus protocol design. This paper presents two consensus protocols to solve the consensus problem of complex multi-agent systems that consist of inhomogeneous subsystems. The limitations of current studies are analyzed, and a novel model based on transfer functions is presented. This model can be used to describe both homogeneous and inhomogeneous multi-agent systems in a unified framework. Based on this model, two sufficient and necessary conditions for the consensus of complex multi-agent systems have been obtained. One is for the systems without any external input, and the other is for the systems with the same external input. Then, two corresponding distributed consensus protocols are presented. Considering that the complex multi-agent systems may require different outputs sometimes, the relationship between inputs and outputs is analyzed. Finally, some simulations are given to demonstrate the performance and effectiveness of the proposed approaches. 相似文献
10.
This paper is concerned with the finite-time consensus problem of distributed agents having non-identical unknown nonlinear dynamics, to a leader agent that also has unknown nonlinear control input signal. By parameterization of unknown nonlinear dynamics, a Lyapunov technique in conjunction with homogeneity technique is presented for designing a decentralized adaptive finite-time consensus control protocol in undirected networks. Homogeneous Lyapunov functions and homogeneous vector fields are introduced in the stability analysis although the whole system is not homogeneous. Theoretical analysis shows that leader-following consensus can be achieved in finite-time, meanwhile, finite-time parameter convergence can be also guaranteed under the proposed control scheme. An example is given to validate the theoretical results. 相似文献
11.
由于已有的分布式次梯度算法大多基于理想的假设:网络拓扑是有向平衡的,构成网络的个体间通信的是各个个体某个状态变量的完全精确的信息。针对更一般的非平衡切换网络以及实际生活中网络通道的带宽限制,提出一种基于有限量化信息通信的切换网络分布式量化次梯度优化算法。在非平衡切换网络中,通过设计具有有限量化水平的一致量化器使所有信息在发送之前都经过量化,利用非二次李雅普诺夫函数方法,证明了所提出的多个体分布式量化次梯度优化算法的收敛性。最后仿真实例验证了所提算法的有效性,而且通过调节量化水平参数,在相同的带宽条件下,可提高信息传输速率,使网络中的个体更快地达到一致。该方法弱化了对刻画网络拓扑的邻接矩阵的假设及对网络带宽的要求,更具实用性。 相似文献
12.
The objective of this paper is to design distributed control algorithms for a multi-agent system such that a rigid formation can be achieved asymptotically and the agents can finally move with a desired velocity. In particular, it is assumed that the formation is not necessarily minimally rigid, and the desired velocity is available to only a subset of the agents. Estimators are constructed for the agents to estimate the desired velocity, which are further used to design the control inputs of the agents. The proposed control algorithms consist of a formation acquisition term which depends on a potential function and the rigidity matrix, and a velocity estimation term. To deal with non-minimal rigidity, the centre manifold theorem is exploited to prove the stability of the resulting system. Simulation results are also provided to show the effectiveness of the proposed control algorithms. 相似文献
13.
In this paper, we investigate the adaptive tracking problem of high-order multi-agent systems with unknown parameters and unknown nonlinear functions. Under the assumption that the leader is the root of a spanning tree, a distributed adaptive controller with tuning function is constructed recursively based on backstepping design method. The designed controller can guarantee that the tracking errors and the parameter errors eventually converge to an arbitrarily small compact set by choosing design parameters. A simulation example demonstrates the effectiveness of the design scheme. 相似文献
14.
In this paper, the finite-time output consensus problem of multi-agent systems is considered by using the iterative learning control (ILC) approach. Two classes of distributed protocols are constructed from the two-dimensional system point of view (with time step and iteration number as independent variables), and are termed as iterative learning protocols. If learning gains are chosen appropriately, then all agents in a directed graph can be enabled to achieve finite-time consensus with the iterative learning protocols. Moreover, all agents in a directed graph can be guaranteed to reach finite-time consensus at any desired terminal output if the iterative learning protocols are improved by introducing the desired terminal output to some (not necessarily all) of the agents. Simulation results are finally presented to illustrate the performance and effectiveness of our iterative learning protocols. 相似文献
15.
This paper addresses the attitude synchronization problem in multi-agent systems with directed and switching interconnection topologies. Two cases for the synchronization problem are discussed under different assumptions about the measurable information. In the first case the agents can measure their rotations relative to a global reference coordinate frame, whilst in the second case they can only measure the relative rotations between each other. Two intuitive distributed control laws based on the axis–angle representations of the rotations are proposed for the two cases, respectively. The invariance of convex balls in SO(3) is guaranteed. Moreover, attitude synchronization is ensured under the well-known mild switching assumptions, the joint strong connection for the first case and joint quasi-strong connection for the second case. To show the effectiveness of the proposed control schemes, illustrative examples are provided. 相似文献
16.
Optimal regulation of stochastically behaving agents is essential to achieve a robust aggregate behavior in a swarm of agents. How optimally these behaviors are controlled leads to the problem of designing optimal control architectures. In this paper, we propose a novel broadcast stochastic receding horizon control architecture as an optimal strategy for stabilizing a swarm of stochastically behaving agents. The goal is to design, at each time step, an optimal control law in the receding horizon control framework using collective system behavior as the only available feedback information and broadcast it to all agents to achieve the desired system behavior. Using probabilistic tools, a conditional expectation based predictive model is derived to represent the ensemble behavior of a swarm of independently behaving agents with multi-state transitions. A stochastic finite receding horizon control problem is formulated to stabilize the aggregate behavior of agents. Analytical and simulation results are presented for a two-state multi-agent system. Stability of the closed-loop system is guaranteed using the supermartingale theory. Almost sure (with probability 1) convergence of the closed-loop system to the desired target is ensured. Finally, conclusions are presented. 相似文献
17.
This paper addresses the leader-following consensus problem of networked Lagrangian systems with unknown control directions and uncertain dynamics. For undirected graphs and directed graphs, two types of distributed control protocols are proposed without assuming that the leader's position information is linearly parameterised. It is proven that all signals in the closed-loop system are bounded, and a leader-following consensus can be achieved with the proposed corresponding protocols. These protocols are distributed in the sense that the control input for each Lagrangian system is solely based on local relative position and velocity information from its neighbourhood set and does not require additional information, e.g. acceleration or observer information of its neighbours, thus avoiding the dead-loop problem and reducing the communication burden. Simulations on networked two-link revolute joint arms are given to validate the theoretical findings. 相似文献
18.
Rui Zhou 《International journal of systems science》2019,50(2):365-378
This paper studies a leader-following consensus problem of continuous-time double-integrator multi-agent systems with measurement noises and time-varying communication delays under directed topology. By utilising the neighbour position and velocity information, which are delayed and disturbed by measurement noises whose intensities are considered a function related to the neighbour position and velocity of agents, a distributed consensus protocol is presented, sufficient conditions of the tracking consensus in the sense of mean square are derived. Finally, the effectiveness of the proposed consensus protocol is proved by some simulations. 相似文献
19.
Chao Deng 《International journal of systems science》2017,48(15):3129-3137
This paper considers the distributed adaptive consensus problem for linear multi-agent systems with quantised relative information. By using a lemma in algebraic graph theory and introducing a projection operator in adaptive law, a novel distributed adaptive state feedback controller is designed with quantised relative state information. It is shown that the practical consensus for multi-agent systems with a uniform quantiser is achieved via the Lyapunov theory and the non-smooth analysis. In contrast with the existing quantised controllers, which rely on the minimum nonzero eigenvalue of the Laplacian matrix, the developed controller is only dependent on the number of nodes. Furthermore, a dynamic output feedback controller based on quantised relative output information is proposed. Finally, a simulation example is given to illustrate the effectiveness of the proposed control scheme. 相似文献
20.
This paper studies the distributed event-triggered output consensus problem of heterogeneous multi-agent system with general linear dynamics under an undirected connected graph. With the state-dependent triggering function, we design a novel distributed event-triggered output consensus controller for each agent to reach consensus with zero final consensus error. This strategy has several distinguishing features, including the fact that individual agent does not require continuous, or even periodic, communication with their neighbours to update the controller or monitor the triggering condition, and all parameters required by its implementation can be locally determined by the agent. We also prove that events cannot be triggered infinitely in finite time (i.e. no Zeno behaviour). Furthermore, the simulation examples are given to illustrate the theoretical analysis. 相似文献