首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An adaptive neural controller is proposed for nonlinear systems with a nonlinear dead-zone and multiple time-delays. The often used inverse model compensation approach is avoided by representing the dead-zone as a time-varying system. The “explosion of complexity” in the backstepping synthesis is eliminated in terms of the dynamic surface control (DSC) technique. A novel high-order neural network (HONN) with only a scalar weight parameter is developed to account for unknown nonlinearities. The control singularity and some restrictive requirements on the system are circumvented. Simulations and experiments for a turntable servo system with permanent-magnet synchronous motor (PMSM) are provided to verify the reliability and effectiveness.  相似文献   

2.
This paper focuses on an adaptive fuzzy tracking control problem for a class of pure-feedback stochastic nonlinear systems with unknown dead zone outputs. To overcome the design difficulty arising from the nonlinearity in the output mechanism, the new properties of Nussbaum function are employed and an auxiliary virtual controller is constructed. The proposed adaptive fuzzy control method guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error converges to a small neighbourhood of the origin in the sense of mean quartic value. Simulation results further demonstrate the effectiveness of the presented control algorithm.  相似文献   

3.
基于ISS的非线性纯反馈系统的自适应动态面控制   总被引:1,自引:1,他引:0  
研究一类具有未知死区的非线性纯反馈系统的自适应控制问题.基于输入状态稳定理论和小增益定理,提出一种自适应动态面控制方案.该方案有效地减少了可调参数的数目,避免了传统后推设计中由于需要对虚拟控制反复求导而导致的计算复杂性.理论分析证明了闭环系统是半全局一致终结有界的.  相似文献   

4.
This paper presents an adaptive neural control design for nonlinear pure-feedback systems with an input time-delay. Novel state variables and the corresponding transform are introduced, such that the state-feedback control of a pure-feedback system can be viewed as the output-feedback control of a canonical system. An adaptive predictor incorporated with a high-order neural network (HONN) observer is proposed to obtain the future system states predictions, which are used in the control design to circumvent the input delay and nonlinearities. The proposed predictor, observer and controller are all online implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed. The conventional backstepping design and analysis for pure-feedback systems are avoided, which renders the developed scheme simpler in its synthesis and application. Practical guidelines on the control implementation and the parameter design are provided. Simulation on a continuous stirred tank reactor (CSTR) and practical experiments on a three-tank liquid level process control system are included to verify the reliability and effectiveness.  相似文献   

5.
A procedure is developed for the design of adaptive neural network controller for a class of SISO uncertain nonlinear systems in pure-feedback form. The design procedure is a combination of adaptive backstepping and neural network based design techniques. It is shown that, under appropriate assumptions, the solution of the closed-loop system is uniformly ultimately bounded.  相似文献   

6.
This paper investigates the problem of adaptive control for a class of stochastic nonlinear time‐delay systems with unknown dead zone. A neural network‐based adaptive control scheme is developed by using the dynamic surface control (DSC) technique and the minimal learning parameters algorithm. The dynamic surface control technique, which can avoid the problem of ‘explosion of complexity’ inherent in the conventional backstepping design procedure, is first extended to the stochastic nonlinear time‐delay system with unknown dead zone. The unknown nonlinearities are approximated by the function approximation technique using the radial basis function neural network. For the purpose of reducing the numbers of parameters, which are updated online for each subsystem in the process of approximating the unknown functions, the minimal learning parameters algorithm is then introduced. Also, the adverse effects of unknown time‐delay are removed by using the appropriate Lyapunov–Krasovskii functionals. In addition, the proposed control scheme is systematically derived without requiring any information on the boundedness of the dead zone parameters and avoids the possible controller singularity problem in the approximation‐based adaptive control schemes with feedback linearization technique. It is shown that the proposed control approach can guarantee that all the signals of the closed‐loop system are bounded in probability, and the tracking errors can be made arbitrary small by choosing the suitable design parameters. Finally, a simulation example is provided to illustrate the performance of the proposed control scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Adaptive neural control of nonlinear MIMO systems with unknown time delays   总被引:1,自引:0,他引:1  
In this paper, a novel adaptive NN control scheme is proposed for a class of uncertain multi-input and multi-output (MIMO) nonlinear time-delay systems. RBF NNs are used to tackle unknown nonlinear functions, then the adaptive NN tracking controller is constructed by combining Lyapunov-Krasovskii functionals and the dynamic surface control (DSC) technique along with the minimal-learning-parameters (MLP) algorithm. The proposed controller guarantees uniform ultimate boundedness (UUB) of all the signals in the closed-loop system, while the tracking error converges to a small neighborhood of the origin. An advantage of the proposed control scheme lies in that the number of adaptive parameters for each subsystem is reduced to one, triple problems of “explosion of complexity”, “curse of dimension” and “controller singularity” are solved, respectively. Finally, a numerical simulation is presented to demonstrate the effectiveness and performance of the proposed scheme.  相似文献   

8.
This paper addresses the problem of adaptive neural control for a class of uncertain pure-feedback nonlinear systems with multiple unknown state time-varying delays and unknown dead-zone. Based on a novel combination of the Razumikhin functional method, the backstepping technique and the neural network parameterization, an adaptive neural control scheme is developed for such systems. All closed-loop signals are shown to be semiglobally uniformly ultimately bounded, and the tracking error remains in a small neighborhood of the origin. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control schemes.  相似文献   

9.
An adaptive output feedback control approach is studied for a class of uncertain nonlinear systems in the parametric output feedback form. Unlike the previous works on the adaptive output feedback control, the problem of ‘explosion of complexity’ of the controller in the conventional backstepping design is overcome in this paper by introducing the dynamic surface control (DSC) technique. In the previous schemes for the DSC technique, the time derivative for the virtual controllers is assumed to be bounded. In this paper, this assumption is removed. It can be proven that the resulting closed‐loop system is stable in the sense that all the signals are semi‐global uniformly ultimately bounded and the system output tracks the reference signal to a bounded compact set. A simulation example is given to verify the effectiveness of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
孙猛  杨洪 《控制理论与应用》2022,39(8):1442-1450
本文研究了具有输出非对称死区和状态含未知控制方向的非严格反馈非线性系统, 设计了稳定的自适应 神经网络控制器. 首先, 针对输出非对称死区的问题, 本文采用死区逆的方法, 构造光滑模型逼近原死区模型. 其 次, 在控制器设计过程中, 基于障碍Lyapunov函数的构造, 动态面控制和反步法, 设计出自适应控制信号, 虚拟控制 信号和实际控制信号. 通过稳定性分析, 证明所设计的神经网络控制器可以保证闭环系统内所有信号是半全局一致 最终有界. 最后, 通过MATLAB数值仿真, 说明所设计控制器的有效性.  相似文献   

11.
In this paper, an output-feedback adaptive control is presented for linear time-invariant multivariable plants. By using the dynamic surface control technique, it is shown that the explosion of complexity problem in multivariable backstepping design can be eliminated. The proposed scheme has the following features: (1) The L performance of the system’s tracking error can be guaranteed, (2) it has least number of updated parameters in comparison with other multivariable adaptive schemes, and (3) the adaptive law is necessary only at the first design step, which significantly reduces the design procedure. Simulation results are presented to demonstrate the effectiveness of the proposed scheme.  相似文献   

12.
This paper focuses on the problem of adaptive control for uncertain nonaffine nonlinear systems. The original nonaffine systems are transformed into the augmented affine systems via adding an auxiliary integrator, which makes the explicit control design possible. By introducing a modified sliding mode filter in each step, a novel adaptive dynamic surface controller is proposed, where the ‘explosion of complexity’ problem inherent in the backstepping design is avoided. It is proven rigorously that for any initial control condition, the proposed adaptive scheme is able to ensure the semiglobal uniformly ultimately boundedness of all signals in the closed loop. An illustrative example is carried out to verify the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the problem of adaptive fuzzy tracking control is investigated for a class of multi-input multi-output nonlinear systems with fuzzy dead zones. The virtual control gain functions and uncertain functions considered in the studied system are all unknown. Fuzzy logic systems are employed to approximate the unknown functions. With the combination of adaptive backstepping design technique and dynamic surface control method, the problem caused by differentiating nonlinear functions repeatedly is avoided. Furthermore, only one adaptive parameter needs to be updated online for each subsystem, which reduces the computation burden considerably. The presented controller not only guarantees the desired control performance, but also guarantees the boundedness of all closed-loop signals. Simulation results are shown to demonstrate the effectiveness of the proposed algorithm.  相似文献   

14.
This article considers the adaptive robust control of a class of single-input-single-output nonlinear systems in semi-strict feedback form using radial basis function (RBF) networks. It is well known that the standard backstepping design may suffer from “explosion of terms”. To overcome this problem, the recently developed dynamic surface control technique which employs a first-order low-pass filter at each step of the backstepping design procedure is generalized to the nonlinear system under study. Our attention is paid to achieve guaranteed transient performance of the adaptive controller. At each step of design, a feedback controller strengthened by nonlinear damping terms to counteract nonlinear uncertainties is designed to guarantee input-to-state practical stability of the corresponding subsystem, and then parameter adaptations are introduced to reduce the ultimate error bound. Furthermore, for the output trajectory tracking problem, it is recommended to adopt the partial adaptation policy to reduce the computational burden due to “curse of dimension” of the RBF networks. Finally, numerical examples are included to verify the results of theoretical analysis.  相似文献   

15.
This paper focuses on the robust output precise tracking control problem of uncertain nonlinear systems in pure‐feedback form with unknown input dead zone. By designing an extended state observer, the states unmeasurable problem in traditional feedback control is solved, and the lumped uncertainty, which is caused by system unknown functions and input dead zone, is estimated. In order to apply separation principle, finite‐time extended state observer is designed to obtain system states and estimate the lumped uncertainty. Then, by introducing tracking differentiator, a modified dynamic surface control approach is developed to eliminate the ‘explosion of complexity’ problem and guarantee the tracking performance of system output. Because tracking differentiator is a fast precise signal filter, the closed‐loop control performance is significantly improved when it is used in dynamic surface control instead of first‐order filters. The L stability of the whole closed‐loop system, which guarantees both the transient and steady‐state performance, is shown by the Lyapunov method and initialization technique. Numerical and experiment examples are performed to illustrate our proposed control scheme with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
An adaptive output feedback control methodology is developed for a class of uncertain multi-input multi-output nonlinear systems using linearly parameterized neural networks. The methodology can be applied to non-minimum phase systems if the non-minimum phase zeros are modeled to a sufficient accuracy. The control architecture is comprised of a linear controller and a neural network. The neural network operates over a tapped delay line of memory units, comprised of the system's input/output signals. The adaptive laws for the neural-network weights employ a linear observer of the nominal system's error dynamics. Ultimate boundedness of the error signals is shown through Lyapunov's direct method. Simulations of an inverted pendulum on a cart illustrate the theoretical results.  相似文献   

17.
控制增益符号未知的MIMO时滞系统自适应控制   总被引:2,自引:0,他引:2  
针对一类带有死区模型并具有未知函数控制增益的不确定MIMO非线性时滞系统,基于滑模控制原理和Nussbaum函数的性质,提出了一种稳定的自适应神经网络控制方案.该方案放宽了对函数控制增益上界为未知常数的假设,并通过使用Lyapunov-Krasovskii泛函抵消了因未知时变时滞带来的系统不确定性.理论分析证明,闭环系统是半全局一致终结有界.仿真结果表明了该方法的有效性.  相似文献   

18.
In this paper, an adaptive dynamic surface control scheme is proposed for a class of multi-input multi-output (MIMO) nonlinear time-varying systems. By fusing a bound estimation approach, a smooth function and a time-varying matrix factorisation, the obstacle caused by unknown time-varying parameters is circumvented. The proposed scheme is free of the problem of explosion of complexity and needs only one updated parameter at each design step. Moreover, all tracking errors can converge to predefined arbitrarily small residual sets with a prescribed convergence rate and maximum overshoot. Such features result in a simple adaptive controller which can be easily implemented in applications with less computational burden and satisfactory tracking performance. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

19.
In this paper, adaptive neural control is proposed for a class of uncertain multi-input multi-output (MIMO) nonlinear state time-varying delay systems in a triangular control structure with unknown nonlinear dead-zones and gain signs. The design is based on the principle of sliding mode control and the use of Nussbaum-type functions in solving the problem of the completely unknown control directions. The unknown time-varying delays are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear functions outside the deadband as an added contribution. By utilizing the integral Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. Simulation results demonstrate the effectiveness of the approach.  相似文献   

20.
This paper is concerned with the neural‐based decentralized adaptive control for interconnected nonlinear systems with prescribed performance and unknown dead zone outputs. In the controller design procedure, neural networks are employed to identify unknown auxiliary functions, and the control design obstacle caused by the output nonlinearity is resolved via introducing Nussbaum function. Then, a reliable neural decentralized adaptive control is developed through incorporating the backstepping method and the prescribed performance technique. In the light of Lyapunov stability theory, it is verified that the proposed control scheme can ensure that all the closed‐loop signals are bounded, and can also guarantee that the tracking errors remain within a small enough compact set with the prescribed performance bounds. Finally, some simulation results are given to illustrate the feasibility of the devised control strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号