共查询到16条相似文献,搜索用时 78 毫秒
1.
2.
依托1 000 kV锡盟-南京(济南-徐州段)特高压交流工程,参考国内750、500 kV同塔双回输电线路的研究成果及运行经验,通过技术经济比较,给出1 000 kV特高压交流同塔双回线路推荐换位塔型式,研究成果可应用于工程设计。 相似文献
3.
4.
5.
1 000 kV特高压交流输电线路与其他电压等级的输电线路一样,长距离输电也需要平衡各相电压、电流,进行导线换位。根据500 kV输电线路几种导线换位塔型的运行经验和1 000 kV特高压的电气距离,初步规划出直线换位塔、小构架耐张换位塔、自身式换位塔、门型换位塔和分立式换位塔,并进行了技术经济比较。 相似文献
6.
随着电力事业的不断发展,输电线路的电压等级在不断地提高,目前已经提高到1 000 kV。针对在建的全国第一条750 kV兰洲东—平凉—乾县双回路输电线路工程铁塔组立中换位塔的施工工艺作以阐述。 相似文献
7.
8.
由于钢管塔优越性显著,中国1 000 kV特高压双回输变电工程基本采用钢管塔结构。然而钢管塔加工工艺复杂、质量要求高、施工难度大,尽管已经采用标准化设计,钢管塔的产能仍很难满足需要。以皖电东送工程为例,参考特高压钢管塔的设计条件,规划设计了新型钢管及角钢混合塔,下横担以上杆件全部采用角钢材料;优化设计了塔身主材钢管变角钢截面处的过渡节点,比较了钢管塔和混合塔2种塔型的动力特性,并开展了经济指标的分析。在保证安全运行的前提下,论证了新型混合塔的可行性,使得杆件中角钢比例大幅增加,钢管比例相应减少,有效缓解钢管应用于输电塔产能不足的问题。 相似文献
9.
10.
11.
1 000 kV同塔双回输电线路电气不平衡度及换位问题研究 总被引:5,自引:0,他引:5
电气不平衡度是衡量输电线路性能和电能质量优劣的重要指标。文章以淮南-上海1 000 kV特高压同塔双回输电工程为例,借助EMTP和Matlab软件仿真计算不同情况下线路的电气不平衡度,根据计算结果研究特高压双回线路的电气不平衡度和换位问题。得出如下结论:双回路导线逆相序排列可明显降低线路的不平衡度,推荐逆相序排列下1 000 kV同塔双回输电工程换位距离取200 km;双回路同向换位后的电气不平衡度明显低于双回路反向换位;对于1 000 kV淮南-上海同塔双回输电工程,推荐全线导线采取逆相序排列方式,淮南-皖南段进行一次同向全换位即可满足线路不平衡度限值要求。 相似文献
12.
13.
14.
15.
1000kV交流同塔双回输电线路导线脱冰跳跃特性 总被引:1,自引:0,他引:1
导线脱冰会引起导线的剧烈运动,使导线跳跃上下摆动,将导致导地线间或导线档中空气间隙的减小,严重时引起闪络;特高压线路由于导线分裂根数较多,截面较大,其脱冰跳跃问题更为严重,特高压输电线路导线脱冰跳跃的考虑对于导线排列,杆塔选型,档距配置等都有重要意义。为此首先进行了单导线覆冰脱落模拟试验研究,研究了不同档距组合、不同脱冰方式下的导线脱冰跳跃规律。还通过计算机仿真的方法针对试验工况进行数值模拟,仿真计算与模拟试验的结果具有相同的规律性。建立了适用于1000 kV交流同塔双回输电线路导线脱冰跳跃分析的3自由度多档导线模型,分析了连续档数、档距组合、档距大小、导线机械参数因素对特高压同塔输电线路脱冰跳跃的影响。分析了15 mm覆冰情况下特高压线路导线脱冰跳跃水平。研究表明,在15 mm覆冰及以下时,特高压同塔双回输电线路相间导线不需要水平偏移,在导线发生脱冰跳跃时线路也能安全运行。 相似文献
16.
为对特高压交流输电线路建设提供技术基础,比较了劈腿式伞形塔和收腰式伞形塔的区别,指出后者防雷性能好、杆塔质量小、工频场强稍小,收腰式伞形塔的性能优于劈腿式伞形塔。选择采用劈腿式伞形塔,还是收腰式伞形塔,与导线水平位移距离的要求值大小有关。特高压交流同塔双回线路导线之间的垂直距离达21 m,从脱冰跳跃的计算和试验结果论证了特高压交流同塔双回线路导线间不需要特别提出水平位移距离要求,收腰式伞形塔可以满足脱冰跳跃要求。双回线路的中相导线是同名相,中相导线之间的距离稍有差异,对电磁环境影响很小。通过线路的计算表明,特高压同塔双回收腰式伞形塔线路可以满足电磁环境标准要求,与鼓型塔的基本相同。在防雷性能上收腰式伞形塔明显优于鼓型塔。建议我国特高压交流同塔双回线路宜选择收腰式伞形塔。 相似文献