首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
中国能源温室气体排放与可持续发展   总被引:2,自引:0,他引:2  
全球气候变化对经济社会的可持续发展带来严重挑战。影响温室气体排放的因素主要有经济增长、人口、能源消费强度、能源结构等。预计中国2005~2020年GDP年均增长率为8.0%~8.6%。基准情景下,中国2050年能源需求总量达到66.19×108t标煤,人均能源消费量4.4t标煤,CO2排放量117.3×108t,能源消费弹性系数0.42,2020年CO2排放强度比2005年下降43%~48%;减排情景下,中国2050年能源消费量50.4×108t标煤,人均能源消费量3.5t标煤左右,CO2排放量70.7×108t,人均CO2排放量4.8t左右,能源消费弹性系数0.32,2020年CO2排放强度比2005年下降48%~52%,若能实现减排情景,则意味着中国已做到了低碳经济;而从可预见的技术条件以及清洁能源和可再生能源利用的规模来看,实现低碳情景难度很大。中国正处于工业化中期的发展阶段,能源需求增加是客观存在的,应力争转变经济增长方式,优化产业与产品结构,减少与控制高耗能产品出口,提高非化石能源比重和能源利用效率。发展中国家在应对全球气候变化行动中应制定中、短期目标与长期目标。中、短期目标即相对减排,中国政府制定的2020年CO2排放强度相对2005年降低40%~45%的约束性目标就属于相对减排;长期目标指的是当发展中国家实现工业化后,若全球技术发展迅猛,这时发展中国家温室气体的总量控制与减排才有可能做到。  相似文献   

2.
以上海为例,采用MARKAL模型研究了能源系统对未来环境政策的响应。政策情景包括提高能源效率、能源结构调整、实施SO2排放总量控制等。研究结果显示,提高能源效率和实施能源结构调整后,上海市CO2、SO2和PM10排放量将明显降低。进一步削减NOx和PM10排放将主要取决于末端处理技术。  相似文献   

3.
实施大气污染物排放总量控制后能源系统的减排效果   总被引:3,自引:1,他引:3  
要以上海为例,采用MARKAL模型研究了能源系统对未来环境政策的响应。政策情景包括提高能源效率、能源结构调整、实施SO2排放总量控制等。研究结果显示,提高能源效率和实施能源结构调整后,上海市CO2、SO2和PM10排放量将明显降低。进一步削减NOx和PM10排放将主要取决于末端处理技术。  相似文献   

4.
本文利用WTW方法构建了面向中长期的电动汽车燃料全生命周期常规大气污染物计算模型,并对纯电动汽车、插电式混合动力汽车和传统汽油车中长期不同电源结构下的常规大气污染物排放情况进行了计算和对比分析。计算结果显示,在当前的电源结构下,纯电动汽车和插电式混合动力汽车燃料全生命周期的VOCs、CO和HC 3种污染物的排放量低于传统汽油车,但NO_x、SO_2、PM_(10)和PM_(2.5) 4种污染物的排放量高于传统汽油车。未来在基准电源结构情景下,相比于同等数量的传统汽油车,电动汽车的规模化发展将有效减少VOCs、CO和HC排放,但会增加NO_x、PM_(2.5)、PM_(10)和SO_2排放。而在高比例可再生能源情景下,电动汽车常规大气污染物排放将在2035年左右达到峰值,2050年电动汽车的全部常规大气污染物排放均低于传统汽油车。  相似文献   

5.
中国农村生物质能消费的CO_2排放量估算   总被引:3,自引:1,他引:2  
借助国际通用的CO2排放鼍计算方法,利用1996~2006年中国农村可再生能源统计资料,对中同农村生物质能消费的CO2排放情况及其空间分布进行分析探讨.结果表明,中国农村生物质能消费的CO2排放总量达到7.25×108t,约占农村生活能源消费CO22排放量的65%,占全国温窜气体总排放量的11.2%,其中秸秆、薪柴等传统生物质能利用方式贡献较大,可达98.64%~99.74%;中国农村生物质能消费CO2排放量的空间分布不均,四川、广西等省CO2排放量大,属超重排放区域,北京、天津、上海、西藏、青海等省(市、区)排放量小,属轻排放区域:区域生物质资源条件和经济社会水平是影响农村生物质能消费CO22排放的主要因素.  相似文献   

6.
哥本哈根会议后,发展低碳经济,实施节能减排,进而减少温室气体排放成为全球共识。为了保护共同的家园,世界各国根据各自的国情提出了不同的减排目标,我国提出到2020年单位GDP二氧化碳排放量比2005年下降40%~45%,实施节能减排与发展低碳能源、低碳产品是实现目标的根本途径。  相似文献   

7.
能源消费是人类活动排放CO2等温室气体的主要来源,碳减排已成为我国能源发展的一个重要约束因素。2012年全世界能源消费排放3.173 4×1010 t CO2,中国能源消费排放的CO2已占世界总排放量的26.0%。2012年全世界人均CO2排放量4 510 kg,而中国人均CO2排放量达到了6 093 kg。同年广东省人均CO2排放量为5 224 kg,高于世界平均水平,低于全国平均水平。随着节能减排和应对气候变化工作的推进,广东的单位产值能耗水平逐年降低,能源结构不断改善,使得全省化石能源消费带来的CO2排放量的增长势头得到抑制,2012年的排放量比2011年略有减少。按目前的发展趋势预测,到2020年,广东CO2排放总量将达到1.606 2×108 t碳当量,比2012年增加9.69×106 t碳当量,人均CO2排放量将达到5 287 kg,略高于2012年的5 224 kg。如果在“十三五”期间加快第三产业发展,则到2020年广东省化石能源消费总量将比2012年下降2.7%,CO2排放总量将比2012年下降3.5%,人均CO2排放量将由2012年的5 224 kg下降到2020年的4 795 kg,接近世界平均水平。  相似文献   

8.
作为中国经济大省、人口大省和能源消费大省,广东省先行启动国家低碳省试点工作,率先开展碳交易市场建设试点。能源消费特征和CO2排放情况是低碳发展的基础,从广东省经济发展入手,分析了广东省终端能源消费及构成、单位GDP能耗和单位工业增加值能耗等能源消费特征,估算了广东省2005年至2010年的CO2排放量,并预测了广东省“十二五”期间的能源消费和CO2排放量,为节能减碳和国家低碳试点工作提供基础数据和决策依据。  相似文献   

9.
北京市城际间客运交通能源需求分析   总被引:1,自引:0,他引:1  
针对经济高速发展、交通运输方便快捷、城际间客运交通运输服务量不断增加而加剧能源需求量和环境排放量问题,以北京市为例,将城际间客运交通分为民航、铁路、公路三个部门,应用计量经济学软件EViews建立了各部门旅客周转量与地区生产总值GDP间的回归关系,模拟其未来的发展趋势;应用LEAP模型设定了不同经济发展模式和不同交通发展模式下的三种情景,预测了2015年北京市城际间客运交通的能源需求量和主要污染物的环境排放量,并分析了预测结果.指出要缓解能源供应和环境排放的压力,实现能源和环境的可持续发展,未来应深八探讨提高交通工具的燃料效率.  相似文献   

10.
《上海节能》2010,(5):F0003-F0003
国家“十一五”国民经济和社会发展规划《纲要》提出到2010年单位GDP能耗比2005年降低20%。2009年哥本哈根全球气候大会上。我国政府承诺,到2020年单位GDP温室气体排放将比2005年下降40%-45%。要实现国家节能减排目标,能源工作必须以科学发展观为指导,通过调整结构。充分发挥市场机制的作用,才能保障能源供应安全。促进低碳经济的发展。  相似文献   

11.
我国清洁能源碳减排效益分析及发展顺序   总被引:1,自引:0,他引:1  
刘兰菊 《水电能源科学》2012,30(8):211-213,115
发展低碳能源是应对全球气候变化、实现电力低碳化发展的有效途径,最终要以发电技术在具体工程项目中应用来实现,衡量各技术的经济可行性、评价可再生能源发电技术CO2的减排效益是关键。分析了当前我国主要5种低碳发电技术置换火电的碳减排成本及产生的碳减排效益,并对2020年低碳能源发电技术的碳减排潜力进行了测算。结果表明,水电发电成本及相应的碳减排成本最低,核电其次,光伏发电最高,应优先发展水电、大力开发核电,同时积极发展风电等其他低碳能源。  相似文献   

12.
This paper studies the pathways of peaking CO2 emissions of Dezhou city in China, by employing a bottom-up sector analysis model and considering future economic growth, the adjustment of the industrial structure, and the trend of energy intensity. Two scenarios (a business-as-usual (BAU) scenario and a CO2 mitigation scenario (CMS)) are set up. The results show that in the BAU scenario, the final energy consumption will peak at 25.93 million tons of coal equivalent (Mtce) (16% growth versus 2014) in 2030. In the CMS scenario, the final energy will peak in 2020 at 23.47 Mtce (9% lower versus peak in the BAU scenario). The total primary energy consumption will increase by 12% (BAU scenario) and decrease by 3% (CMS scenario) in 2030, respectively, compared to that in 2014. In the BAU scenario, CO2 emission will peak in 2025 at 70 million tons of carbon dioxide (MtCO2), and subsequently decrease gradually in 2030. In the CMS scenario, the peak has occurred in 2014, and 60 MtCO2 will be emitted in 2030. Active policies including restructuring the economy, improving energy efficiency, capping coal consumption, and using more low-carbon /carbon free fuel are recommended in Dezhou city peaked CO2 emission as early as possible.  相似文献   

13.
基于长期能源替代规划系统(LEAP)模型,结合情景分析法,模拟广州交通领域未来的能耗及CO、HC、NOx、PM2.5、SO2等主要空气污染物排放趋势,分析广州交通领域的节能及空气污染物排放控制策略.结果表明:综合情景下,到2035年,广州交通领域将较基准情景节能23.06%,CO、HC、NOx、PM2.5、SO2分别减...  相似文献   

14.
In this paper, Shanghai's CO2 emissions from 1995 to 2006 were estimated following the IPCC guidelines. The energy demand and CO2 emissions were also projected until 2020, and the CO2 mitigation potential of the planned government policies and measures that are not yet implemented but will be enacted or adopted by the end of 2020 in Shanghai were estimated. The results show that Shanghai's total CO2 emissions in 2006 were 184 million tons of CO2. During 1995–2006, the annual growth rate of CO2 emissions in Shanghai was 6.22%. Under a business-as-usual (BAU) scenario, total energy demand in Shanghai will rise to 300 million tons of coal equivalent in 2020, which is 3.91 times that of 2005. Total CO2 emissions in 2010 and 2020 will reach 290 and 630 million tons, respectively, under the BAU scenario. Under a basic-policy (BP) scenario, total energy demand in Shanghai will be 160 million tons of coal equivalent in 2020, which is 2.06 times that of 2005. Total CO2 emissions in 2010 and 2020 in Shanghai will be 210 and 330 million tons, respectively, 28% and 48% lower than those of the business-as-usual scenario. The results show that the currently planned energy conservation policies for the future, represented by the basic-policy scenario, have a large CO2 mitigation potential for Shanghai.  相似文献   

15.
本文对城市达峰值的规律以及峰值研究方法进行了梳理,研究广州市碳排放峰值时先对广州市碳排放影响因素进行分解分析,随后基于相关规划对广州市的碳排放峰值进行了情景分析。结果表明,经济增长和人口规模是促进广州市碳排放的两个主要因素。经济增长是最重要的影响因素,未来人口增长将不会是碳排放增长的主要影响因素。产业结构、能源强度和碳排放系数都是减缓广州市碳排放的影响因素,其中能源强度的减排贡献度最大。未来广州市能源消费总量将持续增加,在高经济增速的情况下,广州市至2030年仍未达到碳排放峰值;在较低经济增速的情况下,广州市在2020年左右便可实现碳排放峰值。要实现碳排放达峰,必须引导合理的能源消费需求,加大节能力度;加快产业转型,大力发展低碳技术;大力发展天然气和新能源。
关键词:能源消费量;碳排放;峰值目标;广州市  相似文献   

16.
In Indonesia, energy consumption (excluding non-commercial energy) increased from 328 MBOE in 1990 to 478 MBOE in 1995. As a consequence, energy sector CO2 emissions increased from 150 million tons to over 200 million tons during the same period. The present rapid economic growth Indonesia is experiencing (7–8%) will continue in the future. Based on a BAU scenario, primary energy supply for the year 2020 will be 18,551 PJ, an increase of 5.9% annually from 1990 CO2 from the energy system will increase from 150 Teragrams in 1990 to 1264 Teragram in 2020. The mitigation scenario would reduce total CO2 emissions from the BAU scenario by 10% for the year 2000 and 20% by 2020. Some demand side management and energy conservation programs are already included in the BAU scenario. In the mitigation scenario, these programs are expanded, leading to lower final energy demand in the industrial and residential sectors.

Indonesia's total primary energy supply in 2020 is approximately 5% lower for the mitigation scenario than for the BAU scenario. In the BAU scenario, coal and oil have the same contribution (25%). In the mitigation scenario, natural gas and nonfossil fuels such as hydropower, geothermal, and nuclear have higher contributions.  相似文献   


17.
To better understand the reductions in local air pollution that will result from the implementation of current Chinese energy policy, as well as the co-benefit for greenhouse-gas emission reductions, a Shanghai case study was conducted. The MARKAL model was used to forecast energy consumption and emissions of local air pollutants under different energy policy scenarios and also to analyze the associated reductions in CO2 emissions. The results show that energy policies in Shanghai will significantly reduce SO2 and PM10 emissions and will also achieve the co-benefit of mitigating the increase of CO2 emissions. In energy policy scenarios, SO2 emissions during the period 2000–2020 will maintain the same level as in 2000; and the annual rate of increase of CO2 emissions will be reduced to 1.1–1.2%, compared with 2.7% under a business-as-usual scenario. The problem for the future will be NOx emissions, which are projected to increase by 60–70% by 2020, due to expansion of the transportation system.  相似文献   

18.
Thailand is one of the fastest growing energy-intensive economies in Southeast Asia. To formulate sound energy policies in the country, it is important to understand the impact of energy use on the environment over the long-period. This study examines energy system development and its associated greenhouse gas and local air pollutant emissions under four scenarios in Thailand through the year 2050. The four scenarios involve different growth paths for economy, population, energy efficiency and penetration of renewable energy technologies. The paper assesses the changes in primary energy supply mix, sector-wise final energy demand, energy import dependency and CO2, SO2 and NOx emissions under four scenarios using end-use based Asia-Pacific Integrated Assessment Model (AIM/Enduse) of Thailand.  相似文献   

19.
This article presents results from a meta-study of Nordic low carbon dioxide (CO2) emission scenarios. The focus of the study was to explore possible environmental impacts if selected Nordic low CO2 emission scenarios were achieved by 2020. The impacts of concern were climate change, acidification, eutrophication and human health. Results from this study indicate that large scale reduction of CO2 emissions by 2020 in a Nordic energy system requires large scale penetration of technical measures and structural changes. The environmental improvements achieved would most often facilitate achievement of air pollution targets as well as post-Kyoto targets for greenhouse gas (GHG) emissions. All scenarios do, however, not imply co-benefits between air pollution and CO2 emission reductions and the net impact on climate change could be smaller than anticipated. A conclusion is that co-benefits and risks for trade-offs between air quality and climate change should be emphasised in the development of low-CO2 energy and emission strategies.  相似文献   

20.
The Bulgarian greenhouse gas (GHG) emission profile reveals the energy sector as the most significant emission source and also as an area where great potential for GHG emissions reduction exists. Mitigation options in energy supply were selected considering the potential of fossil fuel substitution and new energy technology implementation in the context of the existing structure of energy system and projects for mid- and long-term development. Basically three modules of ENPEP were used: BALANCE — to calculate the energy flows and energy cost from primary fuel resources and fuel import to energy end-use, IMPACT — to calculate GHG emissions, and ELECTRIC — to project the electric system long-term development. Different mitigation measures combined in four scenarios were developed. The integrated mitigation scenario incorporated a mix of mitigation measures in the energy demand and supply. Implementation of CO2 mitigation measures both in energy demand and energy supply would reduce the 2020 emission level by 34.3 Tg (29.1%), and by 544.2 Tg (21.7%) for the entire study period 2000 – 2020, compared to the baseline scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号