首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用真空非自耗电弧熔炼然后再真空自耗电弧熔炼的方法制备了Nb-Ti-Si-Cr-Hf-Al-B-Y超高温合金的母合金锭,分析了其在不同位置的组织组成及成分分布特点.发现母合金锭的组织主要由Nbss与(Nb,X)5Si2两相组成.在母合金锭的边缘部位,组织主要由(Nbss (Nb,X)5Si3)共晶团组成,此外还有少量的Nbss枝晶;但在母合金锭的中央部位,组织由初生(Nb,X)5Si3块或板条以及(Nbss (Nb,X)5Si3)共晶团组成.母合金锭中的成分分布特点为Si含量由锭边缘向中央逐渐升高,而由锭下部到上部逐渐降低;Ti含量的变化则为由锭边缘向中央,由锭下部到上部逐渐减少.  相似文献   

2.
采用真空非自耗电弧熔炼法制备了Nb-Ti-Si基共晶自生复合材料的母合金锭,分别于1300,1400,1500和1600℃保温50小时对其进行了均匀化处理,然后于1100℃保温50小时进行了时效处理.热处理后的组织主要由Nbss和(Nb,X)5Si3(X代表Ti,Cr和Hf元素)组成,但经1600℃/50h和1600℃/50h 1100℃/50h热处理后的组织中出现了HfO2.热处理后,Nbss的晶格常数较电弧熔炼态的有所升高,Ti,Cr和Al仍然倾向于固溶在Nbss中,而Hf则倾向于固溶在硅化物中.随着热处理温度的升高,Cr,Ti和Al在Nbss和大块硅化物(Nb,X)5Si3中的分配比降低,而Hf的则略有升高.  相似文献   

3.
采用真空非自耗电弧熔炼的方法制备了4种名义成分为Nb-22Ti-16Si-4Hf-3Al-x Cr(x=0,3,5和10,原子分数,%)的合金,并于1450℃保温50 h进行了均匀化处理,研究Cr含量对Nb-Si基超高温合金电弧熔炼态和热处理后组织,及其电弧熔炼态下室温断裂韧性的影响。结果表明:添加Cr没有改变硅化物的晶型(均为γ(Nb,X)5Si3),但其含量随Cr含量的增加而增加,而Nbss/γ(Nb,X)5Si3共晶的含量则逐渐降低;添加Cr还促进了Nbss/(Nb,X)5Si3/Cr2(Nb,X)三相共晶的形成,且该共晶的含量随合金中Cr含量的增加而增加。经1450℃/50 h热处理后,原电弧熔炼态的Nbss枝晶和共晶组织消失,且合金组织明显变得均匀。Cr含量为0,3%和5%的合金组成相为Nbss和γ(Nb,X)5Si3,而在Cr含量为10%的合金中则出现了Nbss,γ(Nb,X)5Si3和Cr2(Nb,X)的三相平衡组织。电弧熔炼态下合金的室温断裂韧性随Cr含量的增加呈现降低的趋势。  相似文献   

4.
分析了Nb-Ti-Cr-Si基超高温合金有坩埚整体定向凝固试样不同区域的组织,结果表明未熔区的组织由初生相Nbss、块状的(Nb,X)5Si3和少量的小块状Cr2Nb组成。在过渡区初生相Nbss依附在未熔区的Nbss优先生长,Nbss/(Nb,X)5Si3共晶组织生长比较混乱,在初生相Nbss枝晶间出现了富Ti的Nbss/Cr2Nb共晶团。稳态区组织中Nbss和(Nb,X)5Si3定向排列,实现了整体定向凝固。固/液界面形态为树枝状,在糊状区出现了Nbss/(Nb,X)5Si3、富Ti的Nbss/(Nb,X)5Si3和Nbss/Cr2Nb三种共晶组织,根据组织分析的结果并总结了其凝固路径,测试了不同区域组织的显微硬度,结果表明稳态区的(Nb,X)5Si3的显微硬度最高。  相似文献   

5.
姚成方  郭喜平 《材料导报》2007,21(12):65-68,72
Nb基超高温合金的制备技术主要包括粉末冶金、真空电弧熔炼和定向凝固等,其中定向凝固可以显著提高该合金的高低温力学性能。Nb基超高温合金的定向凝固组织主要由沿着定向凝固方向生长的初生Nbss枝晶、铌硅化物块或板条以及(Nbss+铌硅化物)共晶等组成,定向凝固速率和固液界面前沿液相中的温度梯度会显著影响其组织形貌及尺寸。在其定向生长过程中,Nbss、铌硅化物及(Nbss+铌硅化物)共晶各相之间竞争生长,形成不同的组织形貌及尺寸,但在合适的条件下,共晶两相可以实现平行耦合生长。  相似文献   

6.
采用真空非自耗电弧熔炼制备添加稀土元素的Nb-20Ti-16Si-3Al-3Cr-2Hf合金纽扣锭,稀土元素为不同含量的Sm,La,Tb。对铸态合金进行微观组织分析和室温断裂韧度测试。结果表明:合金主要由(Nb,Ti)相与Nb5Si3相组成,不同部位存在多种微观组织,粗大的两相组织存在宏观聚集现象;纽扣锭中普遍存在规则的共晶晶胞和以Nb5Si3相为核心的板条状晶胞;共晶晶胞中心为Nb5Si3相和铌固溶体相Nbss组成的层片状组织,外围为粗大的"齿状"两相组织;板条状晶胞的Nb5Si3相核心保留了完整的平直界面和规则的棱角,晶胞外围主要由细小网状的硅化物和粗大的树枝状Nbss相组成。使用多元线性回归分析不同稀土含量与合金室温断裂韧度的关系,不同稀土含量的合金室温断裂韧度值分布在11~15MPa·m^(1/2)之间,多元线性逐步回归分析后得到室温断裂韧度Kq与稀土含量(Sm,La,Tb)的关系为Kq=10.344+6.896La+2.993Sm。  相似文献   

7.
目的了解Nb-16Si-2Fe合金热变形的高温力学行为,并掌握其变形过程中的组织演变。方法采用真空非自耗电弧炉制备了Nb-16Si-2Fe合金,利用Gleeble-1500热模拟机对合金进行高温压缩实验,并通过XRD对合金相结构进行分析。结果合金由白色树枝晶状Nbss固溶体相、灰色连续基体Nb3Si相及黑色块状Nb4Fe Si相组成。试样在较低温度、较大变形速率压缩时,产生脆性断裂。在1200~1400℃范围内,随着变形温度的升高及变形速率的降低,试样开裂倾向减小,应力峰值降低。脆性Nb3Si相由连续分布变成孤岛状分布,并发生共析反应分解生成细小两相组织。结论高温压缩过程使硬脆相Nb3Si含量降低,韧性相Nbss相含量增加,合金高温强度下降,一定程度上降低了该合金的塑性加工难度。  相似文献   

8.
采用电弧熔炼法制备了 Nb220Si210Mo、Nb220Si210Mo23M (M = Cr , Al , Ti) (原子分数) 四种 Nb2Mo2Si基超高温合金。利用 SEM、EDS、XRD等实验技术对铸造合金的相组成与组织形态进行了观察和分析。Nb220Si210Mo 合金由铌固溶体 (Nb SS) 与βNb 5Si 3化合物两相构成 , 其铸造组织包含大量片层状共晶 (Nb SS 2βNb 5Si 3) 组织。少量合金元素 Cr (3 at %) 能够改变 Nb220Si210Mo 合金的相平衡关系 , Nb220Si210Mo23Cr 的铸造组织中不仅存在 Nb SS和βNb 5Si 3 , 而且还出现少量 Cr 2Nb相 ; 而添加合金元素 Al、Ti (3 at %) 并不改变 Nb220Si210Mo 合金的相平衡关系。添加 Cr 使 Nb SS 2 βNb 5Si 3共晶组织失去了平直片层特征 ; Al 有利于共晶组织中片层状共晶形成 ; 添加 Ti使共晶组织呈现羽毛状特征。合金化使 Nb与βNb 5Si 3的晶格常数发生变化 : Nb的晶格常数均变小; Nb220Si210Mo23Cr合金中βNb 5Si 3的 c/ a值减小 , 其它 3种合金中βNb 5Si 3的 c/ a值增大。  相似文献   

9.
用真空非自耗电弧熔炼法制备了Nb-16Si-22Ti-2Hf-2Cr-2Al母合金锭, 用Y2O3坩埚真空感应熔炼对母合金锭重熔, 浇注在温度梯度约为4 ℃/mm的模壳里, 制备出Φ 60 mm×170 mm铸锭, 研究了1500 ℃/100 h真空热处理后铸锭的组织特征对室温抗拉强度和高温压缩性能的影响。结果表明, 真空感应熔炼Nb-16Si-22Ti-2Hf-2Cr-2Al合金经过1500 ℃/100 h热处理后, 合金锭的组成相为NbSS枝晶, Nb5Si3层片或不规则颗粒和残留Nb3Si块。块状Nb3Si的尺寸越大, 发生完全共析转变需要的时间越长、温度越高。热处理合金锭的室温抗拉强度在208~355 MPa之间, 室温延伸率变化不大, 均小于0.3%。残留的粗大块状Nb3Si和热处理过程中析出的HfO2是导致合金锭拉伸性能较低的重要原因。合金锭的高温压缩强度受到组织中硅化物相含量的影响, 压缩强度与硅化物含量成正比。   相似文献   

10.
采用真空电弧熔炼法制备CoCrFeNi-(Nb,Ta)系列高熵合金,详细研究Nb和Ta合金化对CoCrFeNi基高熵合金组织演变和力学性能的协同效应。Nb/Ta合金化方式影响(CoCrFeNi)88Nbx Ta((12-x))合金的组织组成、共晶相片层间距、Laves相的尺寸形貌、两相体积分数及成分组成。Nb,Ta含量为等原子比时,合金组织组成为FCC+Laves两相共晶组织;Nb,Ta含量为非等原子比的合金则呈现为共晶(FCC+Laves)相和初生Laves相的组织结构,初生Laves相的体积分数和晶粒尺寸随Nb/Ta原子比的增加而单调增加。研究合金的压缩屈服强度与Laves相体积分数正向相关,压缩断裂强度几乎不受组织组成的影响,压缩塑性则与Laves相的体积分数、类型与尺寸分布呈现负相关。计算分析CoCrFeNi-(Nb,Ta)高熵合金的强化机制,探讨合金组织组成对其强度的作用规律。分析表明,细晶强化和Laves相的第二相强化是提升合金屈服强度的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号