首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
混沌粒子群优化算法研究   总被引:8,自引:0,他引:8  
利用混沌运动的遍历性、随机性和规律性等特点,提出一种求解优化问题的混沌粒子群优化(CPSO)算法.该算法的基本思想是采用混沌初始化进行改善个体质量和利用混沌扰动避免搜索过程陷入局部极值.典型复杂函数优化仿真结果表明该方法是一种较简单有效的算法.  相似文献   

2.
本文针对粒子群优化算法(PSO)存在早熟收敛的问题,提出了一系列改进措施,分别将混沌理论、遗传算法和免疫算法应用到PSO算法中。计算机仿真实验表明:改进算法基本保持了PSO算法简单、易实现的特点,且能够有效避免算法的早熟收敛问题,具有很强的全局搜索能力。  相似文献   

3.
混沌粒子群优化算法   总被引:41,自引:0,他引:41  
粒子群优化算法是一种新的随机全局优化进化算法。本文把混沌寻优思想引入到粒子群优化算法中,这种方法利用混沌运动的随机性、遍历性和规律性等特性首先对当前杠子群体中的最优粒子进行混沌寻优,然后把混沌手优的结果随机替换粒子群体中的一个粒子。通过这种处理使得粒子群体的进化速度加快,从而改善了粒子群优化算法摆脱局部极值点的能力,提高了算法的收敛速度和精度。仿真结果表明混沌粒子群优化算法的收敛性能明显优于粒子群优化算法。  相似文献   

4.
介绍了基本PSO算法以及两种典型的改进算法:1)全局邻域模式和局部邻域模式对粒子群优化算法的影响,全局邻域模式粒子群优化算法收敛快,但容易陷入局部极小值;局部邻域模式粒子群优化算法由于粒子倾向于在不同的局部区域搜索因而收敛速度慢,但能在较大程度上避开局部极小值;2)混沌粒子群优化算法,它具有混沌的随机性、遍历性、规律性等特性引导粒子及其组成的群落搜索全局最优解。  相似文献   

5.
混沌量子粒子群优化算法   总被引:1,自引:0,他引:1  
林星  冯斌  孙俊 《计算机工程与设计》2008,29(10):2610-2612
针对量子粒子群优化算法在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了混沌量子粒子群优化算法.采用了基于群体适应值方差的早熟判断机制,同时提出了一种基于混沌搜索的新方法,提高了搜索效率.数值实验结果表明,混沌量子粒子群算法效率高、优化性能好,且具有很强的避免陷入局部最优的能力,其性能远远优于一般的粒子群算法和量子粒子群算法.  相似文献   

6.
瞿中  李楠 《计算机科学》2010,37(10):275-278
粒子群算法在搜索后期由于搜索空间有限,容易陷入局部极值,过早地进入早熟状态。针对这种情况,将混沌优化搜索技术用于粒子群算法,利用混沌运动的通历性、随机性等特点,提出了一种混沌粒子群优化的块采样纹理合成算法。实验结果表明,混沌粒子群算法比粒子群算法具有更好的全局寻优能力,克服了粒子群算法的缺点,得到了较高质量的纹理合成图像。  相似文献   

7.
针对柴油生产过程中的加氢精制与调合优化问题,建立加工和库存成本优化模型,采用改进粒子群算法进行计算。通过对某炼油厂一个月的柴油生产数据进行测试,结果表明该算法有较好的应用效果,对柴油排产有一定的指导作用。  相似文献   

8.
三种混合粒子群算法比较   总被引:1,自引:0,他引:1  
混合粒子群算法是融合其它算法或技术特性来针对性地对基本粒子群算法进行改进的一类算法.文中对其中有代表性的三种:交叉粒子群、免疫粒子群、混沌粒子群展开了比较研究,分别从混合目的、混合基本方式、混合算法实现的关键步骤、混合算法的优化性能等多个方面对这三种混合算法进行了比较.通过这些比较,总结出了三种混合算法基本的混合方式及...  相似文献   

9.
粒子群算法简单,只需要初等的教学知识就可以理解,但粒子群算法的工作机理到现在还是没有得到彻底而详细的分析研究,它属于一种还在发展的算法,PSO在优化复杂的多峰函数时,常常会陷入到局部极值点等缺点.混沌是存在非线性系统中的一种较为普遍的现象,具有随机性、遍历性和内在规律性的特点,尤其是混沌遍历性的特点,将混沌局部搜索引入到粒子群算法中,提出了混沌粒子群算法,改进了粒子群算法易陷入局部极值的不足,提高了算法的收敛速度,论述了混沌粒子群优化算法的研究与进展.  相似文献   

10.
混沌粒子群优化算法   总被引:12,自引:1,他引:12  
将混沌融入到传统粒子群提出了混沌粒子群算法。该方法利用了混沌运动的遍历性、随机性以及对初值的敏感性等特性,根据早熟判断机制,在基本粒子群算法陷入早熟时,进行群体的混沌搜索.数值仿真结果表明该方法能跳出局部最优,进一步提高了计算精度和收敛速度,以及全局寻优能力。  相似文献   

11.
一种新的混合粒子群优化算法   总被引:3,自引:3,他引:3  
针对标准粒子群算法在优化过程中受初始值影响较大且容易陷入局部极值的缺陷,将鱼群算法中聚群行为的基本思想引入粒子群算法中,据此建立了粒子中心的基本概念,并利用粒子的聚群特性调整粒子的飞行方向与目标位置,从而提出了一种新的混合粒子群算法,旨在改进原粒子群算法的全局收敛能力。为了检验混合粒子群算法的优化特性,采用三种典型的标准函数对五种现行智能算法进行了多方面的测试和比较。实验结果表明,新算法具有良好的搜索精度与速度,有效弥补了标准粒子群算法局部收敛和鱼群算法精度不高的双重缺陷,适用于解决复杂函数优化问题。  相似文献   

12.
结合粒子群优化算法和拟牛顿法的优点,提出了一种混合粒子群优化算法。该算法首先运行粒子群优化算法,到进化到一定程度时,把当代的最好点作为拟牛顿法的初始点,再利用拟牛顿法,对其进行二次优化。算法充分发挥了粒子群优化算法的全局搜索性和拟牛顿法的局部精细搜索性,同时也克服了粒子群算法后期搜索效率低和拟牛顿法对初始点敏感的缺陷。数值实验结果表明,该算法具有很高的收敛速度和求解精度。  相似文献   

13.
通过分析在电子商务环境下Web挖掘的现状,考虑到Web数据的海量性和高维度性对抽取隐含的、事先未知的知识所带来的复杂性和维数灾,在普通K均值聚类、PSO聚类和K均值与PSO混合聚类算法的基础上,提出了一种将主成分分析与PSO混合聚类算法相结合的模型来对Web服务器中的日志文件进行聚类分析,将抽取的相关Web数据进行主成分分析,分析结果作为PSO混合聚类算法的输入数据,这样不仅减少了输入变量的维数,减少聚类的规模,而且保留了原始变量的主要信息,消除变量之间的多重共线性,为具有海量性、高维度性、异构性等特点的  相似文献   

14.
粒子群聚类算法综述   总被引:3,自引:2,他引:3  
聚类分析是数据挖掘的重要技术之一,它能够通过无监督的学习过程发现隐藏的模式,具有独立发现知识的能力。对现有文献中基于粒子群优化算法的聚类分析技术作了全面的介绍,对几种主要的粒子群聚类算法的基本原理及其特点进行了总结,并分析比较了它们的优点和不足,概述了粒子群聚类算法的常见应用领域;最后探讨了粒子群聚类算法进一步的研究方向。  相似文献   

15.
针对模糊c均值聚类算法自适应性不强、易陷入局部极小值及聚类效果不理想等问题,提出一种基于自适应混沌粒子群的聚类算法。对粒子群的加速因子进行动态设置,使粒子搜索机制具有自适应调节的功能;利用混沌扰动优化,使种群的多样性和全局搜索能力得到提高,利用边界缓冲墙对越界粒子进行处理,避免正负粒子飞越边界的干扰。选取 UCI机器学习库中的4种数据样本集进行测试,测试结果表明,该算法具有良好的性能。  相似文献   

16.
在RFID网络系统中,贴有标签的物品可能随机地布置着,针对如何有效地放置阅读器,使得阅读器可以读取多个标签信息同时减小冲突的问题,建立了RFID网络系统的优化模型,提出了一种混合粒子群算法来优化部署阅读器的位置。实验结果表明,混合粒子群算法分别比传统的粒子群(PSO)和遗传算法(GA)在收敛速度和寻优能力上具有更好的性能,体现出混合粒子群算法的优越性。  相似文献   

17.
基于粒子群优化算法的多交叉口信号配时*   总被引:3,自引:1,他引:3  
以城市道路多个单点信号控制交叉口组成的绿波系统为研究对象,对绿波系统的交叉口信号配时优化进行研究。通过对路段和干线机动车流进行协调控制设计,以西安市某两相邻交叉口晚高峰时段各进口道的交通量、通行能力、饱和流量以及各交叉口进口道的实际车均延误时间为约束,确定各交叉口的信号周期及各相位有效绿灯时长,使得干线延误量最小。设计了PSO算法的编码方式,分别采用PSO算法、灾变PSO算法和二阶振荡PSO算法对多交叉口交通信号配时进行优化计算。仿真实验表明,二阶振荡PSO算法在该实例中表现最优。  相似文献   

18.
王冬菊 《数字社区&智能家居》2007,1(2):1027-1027,1030
粒子群算法原理简单,易于实现,是进化算法中优化效率很高的算法。针对确定环境下的问题优化,提出采用粒子群算法对其进行优化求解。通过对确定性环境下的Benchmark函数的算法仿真研究,表明粒子群算法在确定性问题优化中具有快速收敛性和精确性的特点。  相似文献   

19.
一种遗传算法与粒子群优化的多子群分层混合算法   总被引:3,自引:0,他引:3  
金敏  鲁华祥 《控制理论与应用》2013,30(10):1231-1238
针对遗传算法全局搜索能力强和粒子群优化收敛速度快的特点, 本文从种群个体组织结构上着手, 进行优势互补, 提出了一种遗传算法和粒子群优化的多子群分层混合算法(multi-subgroup hierarchical hybrid of genetic algorithm and particle swarm optimization, HGA–PSO). 算法采用分层结构, 底层由一系列的遗传算法子群组成, 贡献算法的全局搜索能力; 上层是由每个子群的最优个体组成的精英群, 采用钳制了初始速度的粒子群算法进行精确局部搜索. 文中分析论证了HGA–PSO算法具有全局收敛性, 并采用7个典型高维Benchmark函数进行测试, 实验结果显示该算法的优化性能显著优于其他测试算法.  相似文献   

20.
基于群算法的过程参量聚类研究   总被引:1,自引:0,他引:1  
针对复杂过程的参量聚类问题,提出一种基于粒子群优化算法的聚类方法,阐述了聚类算法的基本思路。通过对过程煅烧温度和煅烧转速二维数据的聚类仿真研究,证明该算法在类似过程参量聚类中的实用性能。对粒子群优化算法的聚类特性及参数设置进行了详细的分析,并将其与前期人工免疫聚类结果进行对比,提出了算法的改进方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号