首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new stannate conversion coating (CC) on AZ91D alloy was synthesized by the application of alternative voltage (AV) treatment technique. By using AV technique, the formation process of CC can be controlled. SEM results indicated that a continuous and compact dual-layer CC was formed on alloy surface after AV treatment. TEM results revealed that the inner layer consists of magnesium–aluminum–stannum nano-crystals and amorphous, meanwhile, the outer layer is primarily a mixture of magnesium–stannum hydroxides and oxides with amorphous structure. The electrochemical experimental results revealed that AV treatment significantly improved the corrosion resistance of CC, which attributed to the distinguishing microstructure of AV-CC.  相似文献   

2.
Mg-10Li-1Zn合金锡酸盐转化膜的制备及其耐蚀性能研究   总被引:3,自引:0,他引:3  
采用含有锡酸钠和磷酸二氢钾两种成分的转化液,在Mg-10Li-1Zn合金表面上得到锡酸盐化学转化膜,研究了该转化膜的微观结构、成膜机制及抗腐蚀性能。结果表明,此膜层均匀、连续,主要由MgSnO3、Mg3(PO4)2和SnO组成。腐蚀试验结果显示,该转化膜改善了基体合金的抗腐蚀能力。  相似文献   

3.
镁合金表面化学转化膜研究进展   总被引:1,自引:0,他引:1  
总结镁合金表面化学转化膜的研究现状,介绍铬酸盐转化膜、锡酸盐转化膜、磷酸盐/高锰酸盐转化膜、稀土转化膜、植酸转化膜和钼酸转化膜的处理工艺,讨论磷酸盐/高锰酸盐转化膜的成膜机理,分析各种化学转化膜的优缺点,展望今后镁合金表面化学转化膜的发展方向。  相似文献   

4.
采用高锰酸盐、钼酸盐、锡酸盐转化液分别对AZ91D镁合金进行表面化学转化,得到三种不同的化学转化膜。分别通过SEM、EDS和全浸试验研究不同转化膜的表面微观形貌、成分和腐蚀率,通过划格法和中性盐雾试验法研究转化膜外部有机涂层的附着性能和耐蚀性能。结果表明,高锰酸盐和钼酸盐转化膜表面具有大量微细裂纹,锡酸盐转化膜表面呈鱼鳞状,均为后续涂装提供了具有一定粗糙度的表面。锡酸盐转化膜的耐蚀性最好,高锰酸盐转化后并涂层的附着力和耐蚀性能最好。  相似文献   

5.
The structure, morphology and composition of conversion coatings grown in stannate bath on pure Mg were studied using potential–time, polarization curves, X-ray diffraction, scanning electron microscopy and photocurrent spectroscopy. The coating is manly constituted by crystalline magnesium–tin hydroxide, whose morphology and distribution depends on the conversion bath composition and temperature. The photoelectrochemical investigation allowed to estimate the band gap value of MgSn(OH)6 and flat band potential. A sketch of the metal/passive film/electrolyte junction formed during conversion on the metal substrate is reported to account for the overall photoelectrochemical behaviour.  相似文献   

6.
The technique of post-sealing the phosphated hot-dip galvanized (HDG) steel with molybdate solution was addressed. The composition and corrosion resistance of the improved phosphate coatings were investigated by SEM, EDS, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements, and neutral salt spray (NSS) test. The results showed that molybdate films were formed in the pores of phosphate coatings, and the compact and complete composite coatings composed of phosphate coatings and molybdate films were formed on the zinc surface, resulting in that both the anodic and cathodic processes of zinc corrosion were inhibited remarkably; the corrosion protection efficiency values were increased; and the electrochemical impedance values were enhanced at least one order of magnitude. The low frequency impedance values for the composite coatings were increased at the initial stages of immersion in 5% sodium chloride solution, indicating the self-repairing activity of the composite coatings.  相似文献   

7.
Two kinds of phosphate conversion coatings, including zinc phosphate coating and zinc-calcium phosphate coating, were prepared on the surface of AZ31 alloy in phosphate baths. The morphologies of these coatings were observed using scanning electron microscopy. Their chemical compositions and structures were characterized using energy-dispersive X-ray spectrum, X-ray photoelectron spectroscopy and X-ray diffraction. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization technique. The results show that the flowerlike Zn-Ca phosphate conversion coatings are mainly composed of hopeite (Zn3(PO4)2·4H2O). They have a quite different morphology from the dry-riverbed-like Zn phosphate coatings that consist of MgO, MgF2, Zn or ZnO and hopeite. Both of the zinc and zinc-calcium phosphate coatings can remarkably reduce the corrosion current density of the substrates. The Zn-Ca coating exhibits better corrosion resistance than the Zn coating. Introduction of calcium into the phosphate baths leads to the full crystallinity of the Zn-Ca coating.  相似文献   

8.
采用化学转化法在镁锂合金表面制备了外观深灰色、结构均匀致密、耐蚀性能良好的锌锰磷酸盐转化膜,并研究了磷化温度对磷化膜性能的影响。采用扫描电子显微镜(SEM)、能谱(EDS)仪、X射线光电子能谱(XPS)和X射线衍射(XRD)仪对膜层的表面形貌、化学组成及结构进行了表征。采用动电位极化曲线、电化学交流阻抗(EIS)和腐蚀失重实验对磷化膜的耐蚀性进行了研究。结果表明,锌锰磷化膜主要由Zn、Zn3(PO4)2、MnHPO4、Mn3(PO4)2组成。锌锰磷酸化膜起到了保护镁锂合金的作用,提高了镁锂合金的耐蚀性,当磷化温度为45℃时,磷化膜的腐蚀电流密度最低,腐蚀速率最小,耐蚀性能最好。  相似文献   

9.
The formation process of stannate conversion coating (CC) on AZ91D alloy was in-situ investigated by electrochemical noise (EN). The wavelet transform, as well as noise resistance (Rn) and spectral noise resistance (Rsn), had been employed to analyze the EN data. It was revealed that there exist two distinguishing stages of stannate CC formation process on AZ91D alloy, including an incubation stage companying with the nucleation and nuclei dissolution process, a periodical growth stage involving hemispherical particles growth and coating dissolution process. Furthermore, the results demonstrated that EN was a powerful tool to investigate rapid electrochemical process, such as CC formation process.  相似文献   

10.
Electrodeposition of Zn–Ni coatings performed in acidic baths are not suitable for high strength steels due to their high susceptibility to hydrogen embrittlement.In this work, Zn–Ni coatings were deposited on a high strength steel (4340) upon stirring conditions from an alkaline bath. A complete characterisation of the coatings (corrosion, morphology and composition) has been accomplished, correlating the electrodeposition conditions with these features. The best protective properties of the grown coatings were achieved for the alloys with a single phase structure of γ-Ni5Zn21 and a denser morphology. Additionally, the hydrogen content incorporated is lower than even cadmium-coated 4340 steel which has undergone a postbaking dehydrogenation treatment.  相似文献   

11.
In this work, CeO2/stannate multilayer coatings on AZ91D magnesium alloy were successfully obtained by chemical conversion and sol–gel dip coating. The stannate conversion coatings were prepared from a stannate aqueous bath containing Na2SnO3, CH3COONa, Na3PO4 and NaOH at different temperatures and immersion times. Ceria films were produced on stannate/AZ91D starting from Ce(III) nitrate solutions in H2O. In some cases, the PVA was added as chelating agent. Ceria top coatings were fired at 200 °C for 1 h. Coating microstructure was examined by FE-SEM. Finally, the corrosion resistance features of the coatings were tested by the electrochemical impedance spectroscopy (EIS) in 3 wt.% NaCl solution. The effect of PVA addition was evaluated in terms of microstructure and corrosion resistance features. CeO2/stannate multilayer films, 3 μm thick, uniform, well adherent and nearly crack free were obtained. The formation of CeO2 phase was confirmed by XRD and XPS analyses. The XPS depth profiles showed a limited diffusion of Mg towards the ceramic film. The EIS tests showed a significant improvement of corrosion resistance of the multilayer coatings (~ 16.6 kΩ after 48 h in NaCl solution) with respect to the blank alloy (~ 2.4 kΩ after 48 h in NaCl solution).  相似文献   

12.
Heming Wang  Robert Akid   《Corrosion Science》2007,49(12):4491-4503
The inherent reactivity of the Al–Cu alloys is such that their use for structural, marine, and aerospace components and structures would not be possible without prior application of a corrosion protection system. Historically these corrosion protection systems have been based upon the use of chemicals containing Cr(VI) compounds. Organic–inorganic hybrid silane coatings are of increasing interest in industry due to their potential application for the replacement of current toxic hexavalent chromate based treatments. In the present study, a hybrid epoxy–silica–alumina coating with or without doped cerium nitrate has been prepared using a sol–gel method. The hybrid coatings were applied by a dip-technique to an Al–Cu alloy, Al 2024-T3, and subsequently cured at room temperature. The anticorrosion properties of the coatings within 3.5% NaCl were studied using electrochemical impedance spectroscopy (EIS), and conventional DC polarisation. An exfoliation test method involving immersion in a solution of 4 M NaCl, 0.5 M KNO3 and 0.1 M HNO3 was also used. The cerium nitrate doped sol–gel coating exhibited excellent anticorrosion properties providing an adherent protection film on the Al 2024-T3 substrate. The resistance to corrosion of the sol–gel coating was also evaluated by analysing the morphology of the coating before and after corrosion testing using scanning electron microscopy.  相似文献   

13.
The La2O3 nanoparticles incorporation and electrodeposition were used together to prepare the La-conversion coatings on brass surface in a basal solution containing rare earth salt and benzotriazole. The results showed that both of these techniques can improve the coatings formation and their protectiveness. A critical nanoparticulate La2O3 content and a critical deposition potential were observed, under which the conversion coatings had the highest protective properties. The composite La-conversion coatings could provide important protection against brass corrosion for considerable immersion periods in 3.5% NaCl solution because it ennobled the corrosion potential and decreased the anodic current.  相似文献   

14.
Two types of PEO coatings were produced on AM50 magnesium alloy using pulsed DC plasma electrolytic oxidation process in an alkaline phosphate and acidic fluozirconate electrolytes, respectively. The phase composition and microstructure of these PEO coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion behaviour of the coated samples was evaluated by open circuit potential (OCP) measurements, potentiodynamic polarization tests, and electrochemical impedance spectroscopy (EIS) in neutral 0.1 M NaCl solution. The results showed that PEO coating prepared from alkaline phosphate electrolyte consisted of only MgO and on the other hand the one formed in acidic fluozirconate solution was mainly composed of ZrO2, MgF2. Electrochemical corrosion tests indicated that the phase composition of PEO coating has a significant effect on the deterioration process of coated magnesium alloy in this corrosive environment. The PEO coating that was composed of only MgO suffered from localized corrosion in the 50 h exposure studies, whereas the PEO coating with ZrO2 compounds showed a much superior stability during the corrosion tests and provided an efficient corrosion protection. The results showed that the preparation of PEO coating with higher chemical stability compounds offers an opportunity to produce layers that could provide better corrosion protection to magnesium alloys.  相似文献   

15.
Hybrid sol–gel coatings provide an approach as protective layers on metals. In this work, corrosion protection of aluminium and magnesium alloys by SiO2-methacrylate coatings doped with TiO2–CeO2 nanoparticles was studied. The films show an improvement of the barrier properties at initial immersion. The reactivity of both alloys produces a deterioration of the protection with longer immersion, although TiO2–CeO2 nanoparticles let to observe signals of self-healing effect. Aluminium oxide/sol–gel interface was found to be stable. In combination with excellent paint adhesion on sol–gel films, these coatings can be a promising alternative pre-treatment for high strength aluminium alloys prior to painting.  相似文献   

16.
The main purpose of this paper is to develop a dynamic and non-destructive method to quantify and correlate the microstructure changes of the Cr(III) layer by electrochemical techniques. The open circuit potential (OCP) analysis reveals the nucleation growth mechanisms of the Cr(III) layer and the dissolution phenomena of Zn. In addition, the effects of immersion time to the corrosion behavior of Cr(III)-based conversion coatings (TCCCs) on electrogalvanized steel were studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in a 3.5% NaCl solution. Furthermore, surface morphology of the Cr(III) coatings under different immersion times was examined using both a scanning electron microscope and an atomic force microscope.From the potentiodynamic polarization experiment, the corrosion current density (Icorr) of the specimen with immersion time of 60 s was found appreciably small, representing the inheritance of the best anticorrosion performance. Additionally, the corrosion resistance of the Cr(III)-coating for the specimens obtained between 30 s and 60 s is two order higher than those of the untreated specimen from the EIS experiments. Results show that the quality of Cr(III)-based conversion coatings was strongly influenced by the immersion time of Cr(III) solution. And the optimal immersion time is recommended in the range of 30–60 s.  相似文献   

17.
The corrosion resistance of Ti and Ti–6Al–4V was investigated through electrochemical impedance spectroscopy, EIS, potentiodynamic polarisation curves and UV–Vis spectrophotometry. The tests were done in Hank solution at 25 °C and 37 °C. The EIS measurements were done at the open circuit potential at specific immersion times. An increase of the resistance as a function of the immersion time was observed, for Ti (at 25 °C and 37 °C), and for Ti–6Al–4V (at 25 °C), which was interpreted as the formation and growth of a passive film on the metallic surfaces.  相似文献   

18.
The morphology, composition, phase composition and corrosion products of coatings of pure Zn (obtained from two types of electrolytic bath: an acidic bath (Znacid) and a cyanide-free alkaline bath (Znalkaline)) and of Zn–Mn and Zn–Co alloys on steel substrates were studied. To achieve this, diverse techniques were used, including polarization curves, atomic force microscopy (AFM), scanning electron microscopy (SEM), glow discharge spectroscopy (GDS), X-ray diffraction (XRD), and the salt spray test. In the salt spray test, the exposure time required for the coatings to exhibit red corrosion (associated with the oxidation of steel) decreased in the following order: Zn–Mn(432h) > Zn–Co(429h) > Znalkaline(298h) > Znacid(216h). The shorter exposure times required for corrosion of the pure Zn coatings are related to the coating composition and the crystallographic structure. Analysis of the corrosion products disclosed that Zn5(OH)8Cl2·H2O was a corrosion product of all of the coatings tested. However, the formation of oxides of manganese (MnO, Mn0.98O2, Mn5O8) in the Zn–Mn coating, and the formation of the hydroxide Zn2Co3(OH)10·2H2O in the Zn–Co coating, produced more compact and stable passive layers, with lower dissolution rates.  相似文献   

19.
This paper describes a study undertaken of the morphological and anticorrosive characteristics of surface layers formed on the Al–Mg alloy AA5083 from solutions of Ce(III), by means of various heat treatments while immersed in baths of cerium salts. SEM/EDS studies have demonstrated the existence of a heterogeneous layer formed by a film of aluminium oxide/hydroxide on the matrix and a series of dispersed islands of cerium deposited on the cathodic intermetallics. With the object of evaluating the degree of protection provided by the layers formed and of characterising the particular contribution of the electrochemical response of the system in NaCl, the results obtained by means of EIS are presented and discussed.  相似文献   

20.
The corrosion deterioration process of plasma electrolytic oxidation (PEO) coatings on AM50 magnesium alloy prepared from two different based electrolytes, i.e., an alkaline phosphate electrolyte and an acidic fluozirconate electrolyte, were investigated using electrochemical impedance spectroscopy (EIS) in a 0.1 M NaCl solution with pH of 3, 7 and 11, respectively. It was found that the PEO coating formed in alkaline phosphate electrolyte, which was composed mainly of MgO, suffered from rapid chemical dissolution and lost its protection capability very quickly in acidic NaCl solution (pH 3). The chemical dissolution of this PEO coating was retarded in neutral NaCl solution (pH 7) and the corrosion damage was localized in this environment. On the other hand, in the alkaline NaCl solution (pH 11), the MgO coating underwent only slight degradation. The PEO coating produced in acidic fluozirconate electrolyte, the failure was marked by the flaking-off of the large areas of coating in acidic NaCl solution (pH 3). However, in the neutral and alkaline NaCl solutions, the coating underwent only a slight degradation without any observable corrosion damage in the 50 h test. The results showed that the deterioration process of PEO coated magnesium alloy was governed mostly by the pH of NaCl solution and it was also strongly related to the microstructure and composition of the PEO coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号