首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
刘德富  尹钟大  徐德祥  高峰  李朝华  赵晗 《钢铁》2005,40(4):69-71,82
采用X射线衍射分析、TEM组织观察和电子衍射分析,对新型半高速钢在加热和冷却及回火过程中碳化物的溶解和析出行为进行了研究。结果表明,退火状态下钢中含有MC、M6C和M7C3型碳化物;淬火加热时M6C和M7C3型碳化物全部溶解,回火过程中析出MC、M2C、M6C和M7C3型碳化物,当回火温度为520℃时出现硬度峰值,此时Mo2C的弥散强化起主要作用。  相似文献   

2.
对含Hf和Ta新型镍基高温合金FGH98Ⅰ等离子旋转电极(PREP)雾化原始和不同温度下预热处理粉末中的碳化物相进行了研究.结果表明:原始粉末中MC′型碳化物可分为两类,一类为富Ti、Ta和Nb,另一类为含Ta、Hf和Zr.两类碳化物均含有一定量非碳化物形成元素Co和Ni及中等强碳化物形成元素Cr和Mo,并以块状、粒状分布于枝晶或胞晶间;随着预热处理温度升高,粉末中富Ti、Ta和Nb的MC′型碳化物转变为MC型碳化物,且其所含Ti、Ta和Nb的总量增大;含Ta、Hf和Zr的MC′型碳化物发生分解和转变,析出稳定的M23C6、M6C和MC型碳化物,M23C6碳化物的析出和溶解温度为950℃和1150℃,M23C6和M6C碳化物共存温度为1000~1100℃.另外,粉末中微量元素Hf和Ta主要以碳化物和γ′相参与碳化物反应.  相似文献   

3.
热处理对工模具钢5Cr8MoVSi组织及硬度的影响   总被引:1,自引:0,他引:1  
工模具钢5Cr8MoVSi(0.55C,8.13Cr,1.38Mo,0.45V,0.72Si)经840℃退火硬度为HB218,钢中碳化物以M23C6为主,并有少量的MC和M7C3。该钢合适的淬火温度为980—1050℃,最高硬度为HRC60—61。随淬火温度升高,淬火马氏体由板条状和针状马氏体组织过渡到板条状马氏体组织,剩余碳化物主要为MC和M7C3,为减少残余奥氏体量,该钢应进行二次或三次回火。  相似文献   

4.
25Cr3Mo3NiNb二次硬化钢中的碳化物   总被引:1,自引:0,他引:1  
利用TEM和萃取相分析方法,研究了25Cr3Mo3NiNb二次硬化钢淬火回火组织中的碳化物。结果表明,随淬火奥氏体化温度的升高,M6C型碳化物逐渐溶解。于1050℃奥氏体化时M6C型碳化物全部溶解,淬火态试样中只有少量的Nb(C,N)颗粒和自回火M3C型碳化物。随回火温度的升高,先后析出ε、M3C、M2C和M7C3等类型的碳化物。Nb(C,N)颗粒可以阻止淬火奥氏体晶粒的异常长大,而高温回火析出的M2C碳化物有二次硬化作用,从而提高回火稳定性和高温强韧性。  相似文献   

5.
采用不同的退火温度和退火时间对M2-1.0Si硅改性M2高速钢进行退火处理,并通过显微组织、高温力学性能的测试与分析。研究发现:退火温度和退火时间均对硅改性M2高速钢的组织和力学性能产生重要影响,退火温度不宜过高、退火时间不宜过长,保持8 h退火时间不变,随退火温度从760℃增至880℃,M2-1.0Si硅改性M2高速钢的平均晶粒尺寸先基本不变后迅速增大,抗拉强度和断面收缩率均先增加后减小;保持850℃退火温度不变,随退火时间从4 h延长至12 h,硅改性M2高速钢的平均晶粒尺寸先缓慢增大后急剧增大,抗拉强度和断面收缩率均先基本不变后急剧减小。M2-1.0Si硅改性M2高速钢的退火温度优选为850℃、退火时间优选为8 h。  相似文献   

6.
(Ti,M)(C,N)基金属陶瓷是重要的刀具及涂层材料。综述了国内外(Ti,M)(C,N)基金属陶瓷显微组织和力学性能的研究进展,对(Ti,M)(C,N)基金属陶瓷的黑芯—白内环—灰外环和白芯—灰环显微组织结构特征进行了阐述。系统综述了TiC/TiN含量、Co、Ni粘结相含量、Mo、WC、VC、Cr_3C_2、TaC、NbC添加剂成分对(Ti,M)(C,N)基金属陶瓷显微组织和力学性能的影响,并指出接下来的深入研究方向。结果表明:(Ti,M)(C,N)基金属陶瓷显微组织中芯—环相结构的形成受到原始粉体粒度的影响,当碳化物原始粉体为微米级时形成黑芯—白内环—灰外环结构;当碳化物原始粉体尺寸为亚微米及纳米时形成白芯—灰环结构。金属和陶瓷性能优势的结合依赖于显微组织的调控。多组元添加剂制备的复式(Ti,M)(C,N)基金属陶瓷显微组织中环相和芯相界面能的匹配、硬质相晶粒尺寸分布及取向分布等机理研究有待进一步深入。  相似文献   

7.
采用Ti粉末分别与碳化物Mo2C和VC粉末混合,通过冷等静压、真空高温烧结原位生成6种不同成分的TiC颗粒增强钦基复合材料,用UMT-3型摩擦试验机研究合金元素Mo和V以及Mo2C、VC添加量对钛基复合材料干磨擦性能的影响.测定不同样品的洛氏硬度和基体的显微硬度,用金相显微镜(OM)、X射线衍射仪(XRD)观察和分析样...  相似文献   

8.
采用烧结 -熔渗和后续热处理工艺制备了Co Cr Mo Si硬质相颗粒强化的高性能铁基粉末冶金气门座材料。研究了不同状态下材料的显微组织以及Co Cr Mo Si硬质相颗粒和合金元素对材料性能和组织变化的影响。结果表明 ,材料烧结态孔隙多 ,硬质相颗粒与基体结合不完全。熔渗后 ,孔隙明显减少 ,致密度较高 ,显微组织为针状珠光体、铁素体、粒状碳化物和游离铜 ,硬质相颗粒作为独立相存在于组织中 ,并且与基体形成较为理想的界面结合强度。热处理后 ,显微组织为细针状的马氏体、残余奥氏体、游离铜 ,细小粒状的碳化物和以独立相存在的硬质相颗粒。这种组织可以明显提高材料的硬度、密度和强度 ,并且还具有一定的塑性和冲击韧性。合金元素的加入 ,可以细化晶粒 ,提高材料的机械性能  相似文献   

9.
熔体过热处理对高温合金M963的影响   总被引:1,自引:0,他引:1  
研究了熔体过热处理对高W、Mo的M963镍基高温合金显微组织、瞬时强度及高温持久性能的影响.结果表明与未进行过热处理的合金相比,过热处理后M963合金的二次枝晶间距缩短,γ+γ'共晶尺寸减小.初生的MC型碳化物由分布很不均匀的粗大块状变为分布较为均匀的细小汉字状.同时碳化物中固溶的Nb、Ti的含量减少,而高熔点元素W、Mo的含量相应增加.γ'强化相的尺寸减小,瞬时极限拉仲强度提高18%,延伸率提高12%,持久寿命提高182%.  相似文献   

10.
新日铁(NSC)自1971年制造和供应带钢热轧机高铬铸铁轧辊以来,在材质和制造方法方面文作了进一步的改进,这种轧辊现已应用到各种类型韵轧机上(包括带钢热轧机精轧前段机架工作辊)。其特点概括如下。一、高铬铸铁轧辊的特点 1.碳化物和硬度高铬铸铁轧辊的化学成分是:C,2.5~3.5%;Cr,10~25%;Mn、Ni、Mo、V则是作为合金元素加入的。其Fe-C-Cr基的室温显微组织见图1;碳化物硬度见图2。高铬铸铁轧辊所含碳化物为M_2C_3型,较之一般阿达迈特铬镍耐磨铸铁轧辊和无限冷硬轧辊的M_3C型碳化物要硬得多,轧辊的硬度下降也较慢,高温时亦是如此(图3)。因而,  相似文献   

11.
A philosophy for the use of strong carbide formers like niobium in high speed steels is described. It follows the concept of independently optimizing the compositions of the matrix (for maximum secondary hardening potential) and the volume fraction of the blocky carbides (for protection against abrasive wear). Normally, the two are interdependent through the action of the solidification equilibria, but separate control becomes possible when the blocky carbides are formed by a strong carbide former such as niobium. During normal ingot solidification, such strong carbide formers would produce very large primary carbides. This can be avoided by atomization and powder metallurgical processing. In this way, a steel has been produced whose matrix composition is similar to that of AISI M2, and whose primary carbides are all of NbC type. Its composition is 1.3C, 2W, 3Mo, 1.6V, 3.2Nb (wt pct). Because of its high stability, NbC is a much more effective obstacle to grain growth than the normal high speed steel carbides, and this allows substantially higher austenitization temperatures to be used. Despite its leaner composition, the Nb-alloyed steel matches the cutting performance of AISI M2, and its secondary hardening seems to be more persistent at high temperatures.  相似文献   

12.
The effects of systematic variations in Mo content, W content, and the Mo:W ratio upon the freezing process and as-cast carbide morphology of high speed steels were studied for four series of alloys encompassing the nominal composition ranges of AISI type M2 (6 W-5 Mo-4Cr-2V-0.85C) and MIO (0W-8Mo-4Cr-2 V-0.85C) high speed steels. Thermal analysis, metallographic examination, and quantitative metallography were used to characterize these effects. The Hquidus, peritectic, and eutectic reactions were similarly influenced by molybdenum and tungsten, the peritectic temperature being strongly depressed by additions of either element. The types of carbides found in the as-cast structures did not vary, but the amount of feathery eutectic carbide (a layered structure of MC and M6C) was directly relatedto the total Mo plus W content. The amount of isolated vanadium-rich MC type carbide was seen to increase as the amount of feathery eutectic decreased, and also varied with the Mo:W ratio.  相似文献   

13.
The present work evaluates the influence of the bulk carbon content (0.1, 0.006, and 0.005 wt pct) and tempering temperature (823, 853, and 913 K) on stability, chemical composition, and size of carbide particles in 540 ks tempered states of 2.6Cr-0.7Mo-0.3V steel. The scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDXS) and electron diffraction methods were used to analyze the carbide particles. A characteristic energy-dispersive X-ray (EDX) spectrum can be attributed to each of the identified carbides. The MC carbide is stable in all experimental states. The phase stability of Fe-Cr-rich carbides increased in the order ε, Fe3C → M3C → M7C3, with tempering temperature increasing. In steels with higher carbon content tempered at low temperature, M23C6 carbide was also noted. The Mo2C and M6C carbides were not observed. It was shown that the decrease of the bulk carbon content has the same influence on the carbide phases stability as the increase of the bulk vanadium content at the unchanged Cr, Mo, C bulk contents and tempering temperature. Similarly, the decrease of tempering temperature has the same influence on the carbide phases stability as the decrease of the bulk Cr content at the unchanged V, Mo, and C bulk contents.  相似文献   

14.
使用光学显微镜、扫描也镜和能谱仪等研究了钎具用钢22Si2MnCrNi2MoA动态连续冷却相变规律和退火工艺优化,分析了冷却速度对连续冷却转变曲线和相变组织的影响,探讨了22Si2MnCrNi2MoA钢带状组织成因及改善措施.22Si2MnCrNi2MoA钢具有较高的淬透性,在形变后空冷即可得到贝氏体+马氏体组织.在所选取的温度和时间范围内,710℃退火保温5 h为最优的退火工艺,等温退火并不能改善钢中带状组织的成分不均.带状组织的形成是由于化学元素Si、Mn、Cr、Ni和Mo的偏聚引起的,提高横截面内变形均匀程度对于改善棒材组织均匀性是有利的,但冶金过程成分偏析均质控制才是减轻或消除带状组织成分不均的关键.   相似文献   

15.
The effects of silicon additions up to 3.5 wt pct on the as-cast carbides, as-quenched carbides, and as-tempered carbides of high-speed steels W3Mo2Cr4V, W6Mo5Cr4V2, and W9Mo3Cr4V were investigated. In order to further understand these effects, a Fe-16Mo-0.9C alloy was also studied. The results show that a critical content of silicon exists for the effects of silicon on the types and amount of eutectic carbides in the high-speed steels, which is about 3, 2, and 1 wt pct for W3Mo2Cr4V, W6Mo5Cr4V2, and W9Mo3Cr4V, respectively. When the silicon content exceeds the critical value, the M2C eutectic carbide almost disappears in the tested high-speed steels. Silicon additions were found to raise the precipitate temperature of primary MC carbide in the melt of high-speed steels that contained d-ferrite, and hence increased the size of primary MC carbide. The precipitate temperature of primary MC carbide in the high-speed steels without d-ferrite, however, was almost not affected by the addition of silicon. It is found that silicon additions increase the amount of undis-solved M6C carbide very obviously. The higher the tungsten content in the high-speed steels, the more apparent is the effect of silicon additions on the undissolved M6C carbides. The amount of MC and M2C temper precipitates is decreased in the W6Mo5Cr4V and W9Mo3Cr4V steels by the addition of silicon, but in the W3Mo2Cr4V steel, it rises to about 2.3 wt pct.  相似文献   

16.

Room temperature fracture toughness along with compressive deformation behavior at both room and high temperatures (900 °C, 1000 °C and 1100 °C) has been evaluated for ternary or quaternary hypoeutectic (Nb–12Si–5Mo and Nb–12Si–5Mo–20Ti) and hypereutectic (Nb–19Si–5Mo and Nb–19Si–5Mo–20Ti) Nb-silicide based intermetallic alloys to examine the effects of composition, microstructure, and annealing (100 hours at 1500 °C). On Ti-addition and annealing, the fracture toughness has increased by up to ~ 75 and ~ 63 pct, respectively with ~ 14 MPa√m being recorded for the annealed Nb–12Si–5Mo–20Ti alloy. Toughening is ascribed to formation of non-lamellar eutectic with coarse Nbss, which contributes to crack path tortuosity by bridging, arrest, branching and deflection of cracks. The room temperature compressive strengths are found as ~ 2200 to 2400 MPa for as-cast alloys, and ~ 1700 to 2000 MPa after annealing with the strength reduction being higher for the hypoeutectic compositions due to larger Nbss content. Further, the compressive ductility has varied from 5.7 to 6.5 pct. The fracture surfaces obtained from room temperature compression tests have revealed evidence of brittle failure with cleavage facets and river patterns in Nbss along with its decohesion at non-lamellar eutectic. The compressive yield stress decreases with increase in test temperature, with the hypoeutectic alloys exhibiting higher strength retention indicating the predominant role of solid solution strengthening of Nbss. The flow curves obtained from high temperature compression tests show initial work hardening, followed by a steady state regime indicating dynamic recovery involving the formation of low angle grain boundaries in the Nbss, as confirmed by electron backscattered diffraction of the annealed Nb–12Si–5Mo alloy compression tested at 1100 °C.

  相似文献   

17.
Based on the Thermo-Calc thermodynamic software,the type of equilibrium precipitated carbides and their contents in high Mo Nb-microalloyed H13steel(NMH13steel)were calculated.The composition,morphology,and distribution of carbides after spheroidal annealing of two forged experimental steels were comparatively examined by means of optical microscopy(OM),scanning electron microscopy(SEM),electron dispersive spectroscopy(EDS)and transmission electron microscopy(TEM).VC,M23C6 and M6C are identified in H13 steel after spheroidizing annealing,while(V,Nb)C,M23C6,M2C and M6C are observed in NMH13 steel.Moreover,it is found that the addition of Nb significantly enhances the stability of MC phase and the high Mo content accelerates the precipitation of small rod-shape M2C phase in NMH13 steel.The amount of the fine carbides in NMH13 steel obviously increased with M2C and M6C precipitated from the ferrite phase,which is in accordance with the results of thermodynamic calculations.  相似文献   

18.
王彧  柳木桐  钟平 《特殊钢》2018,39(2):68-71
试验1Cr12Ni3Mo2VN钢(/%:0.13C,0.16Si,0.70Mn,11.42Cr,2.78Ni,1.67Mo,0.30V,0.0360N)的冶金流程为30t EAF-LF-VD-3t ESR-锻造成Φ350mm材。研究了950~1100℃淬火和200~700℃回火对1Cr12Ni3Mo2VN钢组织与性能的影响以及500℃,500~10000h时效的拉伸性能。结果表明,淬火温度950~1100℃对1Cr12Ni3Mo2VN钢力学性能的影响不明显;该钢的回火脆性区在600℃左右,但对钢的塑性的影响较小。经1040℃淬火、540℃回火的1Cr12Ni3Mo2VN钢,在500℃时效500h后,其抗拉强度和屈服强度分别下降了7.7%和5.8%,时效10000h后,其抗拉强度和屈服强度分别下降了13.4%和14.6%,断面收缩率下降了40%,主要原因是杂质元素在晶界处偏聚以及碳化物在晶界处析出。  相似文献   

19.
The influence of mischmetal (Ce-La) addition on phase transformation and as-cast microstructure characteristics of M2 high-speed steel (HSS) was investigated using Thermo-Calc software, differential scanning calorimetry, X-ray diffractometry and scanning electron microscopy with energy dispersive spectrometry. The results showed that the measured phase transition points of M2 HSS were broadly consistent with the theoretical results. After mischmetal addition, the liquidus peak temperature, the peak temperature of the eutectic precipitation of M6C and MC were all increased, especially for the M6C which was affected significantly and increased about 31 °C. The contents of Mo and V in the eutectic carbide decreased and that of Fe increased, while in the matrix, the Mo, V and Cr contents all increased slightly. Furthermore, the microstructure of as-cast dendrite and ledeburite were refined, the total eutectic carbide content decreased and distributed into a discontinuous network, the lamellar spacing of M2C was reduced and the lamellae became thinner.  相似文献   

20.
High‐speed steels have been used mostly for multi‐point cutting tools and for plastic working tools. High speed steels are ferrous based alloys of the Fe‐C‐X multi‐component system where X represents a group of alloying elements comprising mainly Cr, W or Mo, V, and Co. The properties of these steels can be improved by modifying their chemical composition or the technology of their production. One of the new trends in modifying the tool steels chemical composition consists in the addition of niobium and nitrogen. In this work, the effects of niobium and nitrogen on morphology of carbides and secondary hardening temperature of investigated high speed tool steels were studied. This experimental work shows that, the conventional ingots have many types of carbides of different shapes and sizes precipitate on the boundary together with thick needle like carbides. On the contrary, for nitrogen steel, the nitrogen alloying leads to form dense, fine and well distributed microstructure. While, on the case of niobium alloying, single carbide (MC), and different types of eutectic carbides were precipitated which have a major effect on the secondary hardening temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号