首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gd2O2CO3:Eu^3+ with type-Ⅱ structure phosphor was successfully synthesized via flux method at 400 ℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO3^2- host absorption and charge transfer (CT) of Gd^3+-O2^- were observed for Gd2O2CO3:Eu^3+. Under 172 nm excitation, Gd2O2CO3:Eu^3+ exhibited strong red emission with good color purity, indicating Eu^3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu^3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu^3+ excited by 172 nm for Gd2O2CO3:Eu^3+ was about 5%. Gd2O2CO3:Eu^3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.  相似文献   

2.
Adjustable Luminescence of SrAl2O4:Eu^2+ , Dy^3+ Assembled in Zeolite   总被引:1,自引:0,他引:1  
Capsulating guest into the nanometer yoids of zeolites is a effective way to form novel host-guest material. In our work, stoichiometric SrAl2O4: Eu^2 , Dy^3 sol guest was prepared by sol-gel method and assembled into the nanometer channels of zeolite ZSM-5 host through mechanical mixing, hydrothermal reaction and microwave heating reaction, respectively. After being reduced and diffused in a microwave muffle, the fluorescence spectra of the host-guest materials exhibit remarkable blue shifts in comparison of that of SrAl2O4 : Eu^2 , Dy^3 . Some interesting phenomena in the assembled hostguest materials are that the after-glow emission spectra exist two bands at about 400 nm and 517 nm and the relative strengths of these two bands can be adjusted by changing the assembly methods and the assembly concentration. These are attributed to the fact that the phosphor was capsulated into the voids of zeolite ZSM-5 and generated the quantum size effect and the host-guest effect.  相似文献   

3.
Y2O3: Er^3+, Yb^3+ nanoparticles were synthesized by a homogeneous precipitation method without and with different concentrations of EDTA 2Na. Upconversion luminescence spectra of the samples were studied under 980 nm laser excitation. The results of XRD showed that the obtained Y2O3:Er^3+,Yb^3+ nanoparticles were of a cubic structure. The average crystallite sizes calculated were in the range of 28-40 nm. Green and red upconversion emission were observed, and attributed to ^2H11/2,^4S3/2→^4I15/2 and ^4F9/2→^4I15/2 transitions of the ion, respectively. The ratio of the intensity of green emission to that of red emission drastically changed with a change in the EDTA 2Na concentration. In the sample synthesized without EDTA, the relative intensity of the green emission was weaker than that of the red emission. The relative intensities of green emission increased with the increased amount of EDTA 2Na used. The possible upconversion luminescence mechanisms were discussed.  相似文献   

4.
5.
SrAl2O4:Eu2+,Dy3+ hollow microspheres were successfully prepared through a facile and mild solvothermal co-precipitation combining with a postcalcining process.The structure and particle morphology were investigated by X-ray diffraction(XRD),scanning and transmission electron microscopy(SEM and TEM)pictures,respectively.The mechanism for the formation of spherical SrAl2O4:Eu2+,Dy3+ phosphor was preliminary presented.After being irradiated with ultraviolet(UV)light,the spherical phosphor emitted long-lasting green phosphorescence.Both the photoluminescence(PL)spectra and luminance decay,compared with that of commercial bulky powders,revealed that the phosphors had efficient luminescent and long lasting properties.It was considered that the SrAl2O4:Eu2+,Dy3+ hollow microspheres had promising long-lasting phosphorescence with potential scale-dependent applications in photonic devices.  相似文献   

6.
The nanocrystals Er2O3 were prepared by using a combustion method with Schiff base as a chelating agent. The Er(Ⅲ) coordanation compound of Schiff base, obtained from erbium nitrate and retinal Schiff base, underwent a combustion process and voluminous ashes formed when calcimining the complex in air. Pure cubic Er2O3 nanocrystals with a diameter of 13nm were produced. The nanocrystals were homogeneous and rigid coacervation was not observed. The photoluminescence emission spectrum of the erbium (Ⅲ) oxide nanocrystals shows that it has a characteristic peak at 1.54μm, and some other shoulder peaks appear on both sides of the main peak.  相似文献   

7.
High calcination temperature is an important factor in the preparation process of CeMgAl11O19:Tb^3 . To decrease the temperature, different fluxes (H3BO3, MgF2 and AlF3) were tested in order to compare their influence on the luminescence property and particle size distribution of CeMgAl11O19: Tb^3 . The result shows that when the content of MgF2 is 0.1 mol/mol, the intensity of luminescence can attain a maximum. Furthermore, MgF2 can improve the particle size quality of the phosphor. So MgF2 can take the place of the conventional flux H3BO3 to prepare high quality CeMgAl11O19:Tb^3 phosphor. In addition, the relation between phosphor property and content of AlF3 was also studied. The crystal structure of the phosphor was analyzed by XRD method. The phase composition analysis shows that the reason of decrease of the brightness of CeMgAl11O19:Tb^3 phosphor is the emergence of TbAlO3 and α-Al2O3 during the preparation process.  相似文献   

8.
The (60 - x)Bi2O3 - xGeO2-30B2O3-10ZnO (x = 5, 10, 20, 30 molar percent) glasses doped with Er^3+ and Er^3+/Yb^3+ were fabricated using the melting method. The thermal stability of the glasses was studied with their DTA curves. The results show that the difference between the glass transition temperature and the crystallization onset temperature increases with the increase of GeO2 content, indicating that the thermal stability of the glass has become better. The absorption spectra were recorded and the stimulated emission cross sections were calculated using the McCumber theory. The Ω2, O4, and Ω6 parameters,the transition probability, the radiative lifetime, and the fluorescence branch ratio of Er^3+ for optical transition were calculated from their absorption spectra in terms of reduced matrix U^(t)(λ = 2, 4, 6) character for optical transitions. The infrared emission of Er^3+ was measured upon excitation with 970 nm light and the full width at half-maximum (FWHM) was estimated from the emission spectra. The pumping efficiency and the intensity of the emission at the 1.54 μm band of Er^3+ were enhanced considerably by co-doping Yb^3+ .  相似文献   

9.
YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu^3+ phosphors with concentration of Eu^3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength region. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu^3+ ions in YAl3(BO3)4: Eu^3+ phosphors was 8 mol%.  相似文献   

10.
Ce^3 or/and Tb^3 doped GdMgB5O10 phosphors were prepared by sol-gel technique. XRD, SEM and PL (photolumineseent) measurements were used to characterize the phosphor powders. The results of XRD reveal that phase pure GdMgB5O10 powders are formed at 800℃ and conform the good quality of the synthesized materials obtained by such a process. The luminescent properties of GdMgB5O10:Ce^3 and/or Tb^3 are presented. Their luminescent mechanism and host-to-activator energy transfer were discussed.  相似文献   

11.
A needle-like Eu2+ and Dy3+ co-doped BaAl2O4 long-lasting phosphor was synthesized via a hydrothermal-homogeneous precipitation method assisted by cetyl trimethyl ammonium bromide(CTAB) as a template.The crystal structure,morphology and optical properties of the composites were characterized.XRD results showed that the single-phase BaAl2O4 was formed at 900 ℃ in an active carbon atmosphere,which was much lower than that prepared by traditional solid-state reaction method.Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) observation revealed that the precursor had well-dispersed distribution and showed needle-like morphology with the average diameter of about 100 nm and the length up to 1 μm.The final product,BaAl2O4:Eu2+,Dy3+ phosphor,inherited the needle-like shape from precursor via adding the surfactant CTAB.After irradiation by ultraviolet radiation with 355 nm for 5 min,the phosphors emitted bluish green color long-lasting phosphorescence corresponding to the typical emission of Eu2+ ion.Both the photoluminescence spectra and luminance decay revealed that the phosphor had efficient luminescent and long-lasting properties.  相似文献   

12.
A flower-like Eu2+ and Dy3+ co-doped SrAl2O4 long-lasting phosphorescent (LLP) phosphor was synthesized via the inorganic- salt-based sol-gel method. The crystal structure, morphology and optical properties of the composite were characterized. X-ray diffraction diffusion (XRD) data and DSC-TG curves of the phosphor revealed that the SrAl2O4 crystallites have been formed after the precursor was calcined at 900 °C and to be single-phase SrAl2O4 at 1100 °C. The SEM photographs indicated that the sample exhibited a universal flower-like morphology with crystallite size of about 1-2 μm. After being irradiated with ultraviolet (UV) light, the flower-like phosphor emitted long-lasting green phosphorescence with an excitation peak at 365 nm and emission peak at 500 nm which was ascribed to the characteristic 5d-4f transition of Eu2+. Both the PL spectra and the luminance decay curve revealed that this phosphor exhibited efficient luminescence and long lasting properties.  相似文献   

13.
Gd2O3:Ho3+,Yb3+ nanocrystals were synthesized via solvothermal method.X-ray diffraction(XRD),transmission electron microscopy(TEM),absorption and upconversion spectra were employed to characterize the synthesized nanocrystals.The results of XRD and TEM showed that obtained Gd2O3:Ho3+,Yb3+ nanocrystals were cubic in crystal structure and uniform spherical in morphology.The average crystallite size was calculated to be 7.5 nm.Green and red up-conversion emissions corresponding to(5F4,5S2)→5I8 and 5F5 → 5I8 transition were observed upon 980 nm excitation at room temperature.The results indicated that both green and red luminescence were based on the two-photon processes.Laser power and doping concentration dependence of the upconverted emissions were studied to understand the upconversion mechanisms.Excited state absorption and energy-transfer processes were discussed as the possible mechanisms for the visible emissions.  相似文献   

14.
Green-photoluminescence material Zn4B6O13: Ce^3 , Tb^3 was first synthesized by spread method of high temperature and solid state reaction, which is cubic crystal system with lattice parameters : a0 =0. 7472 nm, V = 0.4172 nm^3, and structural properties are investigated by XRD. The excitation and emission band of Ce^3 ion singledoped in Zn4B6O13 transfer longer spectra 2.38 ~4.94 kk than in other matrices. Emission band of Ce^3 ion better overlaps with the ^7F6→^5G2,^5D1 ,^5H7 absorption band of Tb^3 . It shows that emission of Tb^3 ion is sensitized by Ce^3 . In Zn4B6O13:Ce^3 , Tb^3 , it is due to the energy transfer mechanism, resonance transfer of electric muhipolax interaction of the dipole-dipole between Ce^3 →Ce^3 and Ce^3 →Tb^3 . The color coordinates of ZB4B6O13: x =0.281, y =0.619. The mean diameter of the particles is 0.23μm.  相似文献   

15.
Preparation of Y2O3 Nanoparticles Organosol by Microemulsion Method   总被引:4,自引:0,他引:4  
Y2O3 nanoparticles organosol coated with DBS was prepared by microemulsion method. The optimum preparative conditions of Y2O3 nanoparticles organosol were obtained. TEM analysis indicates that the prepared Y2O3 nanoparticles are spherical in shape. The size is about 5 nm. The size distribution is in the narrow range and no agglomerates are observed. Y2O3 nanoparticles coated with DBS are easy to dissolve in weak polar solvents.  相似文献   

16.
There are growing interests on phosphor thin films owing to their potential application in high-resolution devices such as cathode ray tubes and flat panel display devices. The solution-based sol-gel method is one of the most important techniques for the synthesis of various functional coating films. Compounds with the apatite structure are very suitable host lattices for various luminescent ions. Ca2RE8(SiO4)6O2 ( RE=Y, Gd, La ) is a kind of ternary rare-earth-metal silicate with oxyapatite structure, which has been used as host material for the luminescence of various rare earth and mercury-like ions. In this article, Ca2Gd8(SiO4)6O2:Dy^3+phosphor films were dip-coated on quartz glass substrates through the sol-gel process. X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) spectra, as well as lifetimes were used to characterize the resulting films. AFM study revealed that the phosphor films consisted of homogeneous particles. The Dy^3+ showed its characteristic emission in crystalline phosphor films, i.e., ^4F9/2-^6H15/2 and ^4F9/2-^6H13/2.  相似文献   

17.
Anelectrorheologicalfluidisasuspensionofpolarizablesolidparticlesdispersedinanon conductingliquid ,exhibitingdrasticandreversiblechangeinrheologicalpropertieswhenanexternalelectricfieldisapplied[1] viaorderingofthemicrostructureintoparticulatecolumns.Thi…  相似文献   

18.
Using polyethylene glycol (PEG) as the surfactant, Bi3.84W0.16O6.24 up-conversion luminescence nano-crystal co-doped with Yb3+ and Ho3+ ions was synthesized by the hydrothermal method. The structure and properties of luminescence powder were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). It was of cubic system when the sample was synthesized at a low temperature and the particle size was about 30 nm. The results showed that adding surfactants was useful to improve the powder agglomeration and the grain crystal was spherical. The green emission peak at 546 nm and red emission peak at 655 nm, corresponding to the ( 5F4, 5S2)→ 5 I 8 and the 5 F 5 → 5 I 8 transitions of Ho 3+ , respectively, were simultaneously observed at room temperature under excitation of 980 nm semiconductor laser. The up-conversion luminescence intensity was the strongest when the concentration ratio of Yb3+ /Ho3+ was 6:1 and the concentration of Ho 3+ ion was 1.5 mol.%. The up-conversion mechanism was also studied. The green and red emission peaks were the two-photon absorption according to the relationship between the pump power and the luminescence intensity.  相似文献   

19.
20.
CeO2-Co3O4 Catalysts for CO Oxidation   总被引:1,自引:0,他引:1  
CeO2-Co3O4 catalysts for low-temperature CO oxidation were prepared by a co-precipitation method. In combination with the characterization methods of N2 adsorption/desorption, XRD, temperature-programmed reduction (TPR), and FT-IR, the influence of the cerium content on the catalytic performance of CeO2-Co3O4 was investigated. The results indicate that the prepared CeO2-Co3O4 catalysts exhibit a better activity than that of pure CeO2 or pure Co3O4. The catalyst with the Ce/Co atomic ratio 1 : 16 exhibits the best activity, which converts 77% of CO at room temperature and completely oxidizes CO at 45 ℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号