首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate the influence of hydrogen on the mechanical properties of initial and preliminarily deformed (cyclic bending with an amplitude of 1.6% and a frequency of 0.5 Hz in helium and hydrogen under a pressure of 35 MPa) specimens of KhN55MBYu and KhN56MBYuD alloys in the temperature range 293–1073 K. The number of cycles to fracture in low-cycle bending of plane specimens and percentage elongation are most sensitive to the influence of hydrogen (decrease, respectively, by 95–98 and 80–90% of their values in helium). The decreases in the strength and plasticity of KhN55MBYu alloy are maximum at room temperature, minimum in the temperature range 873–973 K, and again substantial at 1073 K. The positive influence of the preliminary cyclic deformation in hydrogen on the ultimate short-term strength and plasticity of both alloys in hydrogen was detected. At room temperature, the percentage elongation of specimens of KhN55MBYu alloy increases from 10 (undeformed specimens) to 29% (deformed by 20% of the low-cycle fatigue life).  相似文献   

2.
The results of a calculation-experimental investigation of the main characteristics of stress wave propagation and fracture processes in copper specimens exposed to pulsed high-current electron beams are given. An integral fracture criterion was used for estimating strength in the calculations. The data obtained illustrate the possibility of using the method of numerical modeling of wave and spalling phenomena occurring during thermal shock.Translated from Problemy Prochnosti, No. 2, pp. 61–64, February, 1994.  相似文献   

3.
杨娟  朋改非 《复合材料学报》2016,33(12):2931-2940
采用普通原材料制备56 d龄期抗压强度为140~160 MPa的空白组超高性能混凝土、钢纤维超高性能混凝土及混杂纤维超高性能混凝土,测定其遭受高温作用后的残余抗压强度和劈裂抗拉强度,并对100%含湿量的混凝土试块进行高温爆裂试验。此外,测定大小2种加热速率对超高性能混凝土高温爆裂行为的影响。结果表明:所配制混凝土的残余抗压强度均随着目标温度的升高呈现先增大再降低的趋势,800℃高温后的残余抗压强度约为常温强度的30%。钢纤维与混杂纤维混凝土的残余劈裂抗拉强度亦呈现先升高再降低的趋势,800℃高温后的残余劈裂抗拉强度分别为常温强度的15.1%和35.4%。空白组混凝土的残余劈裂抗拉强度随着目标温度的升高而单调下降,800℃高温后的强度值约为常温强度的20.3%。7.5℃/min加热速率下,100%含湿量的3种混凝土试块均发生了严重高温爆裂,单掺钢纤维可以改善超高性能混凝土的高温爆裂,但不能避免爆裂的发生,而混杂纤维对超高性能混凝土高温爆裂的改善效果并未显著优于钢纤维。2.5℃/min加热速率下,混杂纤维可避免部分超高性能混凝土试块发生爆裂。   相似文献   

4.
We describe the results of experimental and theoretical investigation of the influence of the concentration of preliminarily injected hydrogen on the creep and long-term strength of VT6 titanium alloy under the action of tensile stresses equal to 47–217 MPa. The tests carried out at a temperature of 600°C show that hydrogen (up to 0.3 wt.%) strongly decreases the steady-state creep rate of this alloy, increases the time to fracture, and lowers (severalfold) its ultimate fracture strain. The obtained results are interpreted on the basis of the analysis of changes in the structural state of the alloy. The proposed version of the kinetic theory of creep gives good agreement between the experimental and theoretical values of the principal characteristics of creep and long-term strength. Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 44, No. 5, pp. 98–104, September–October, 2008.  相似文献   

5.
In this study, an inverse analysis approach is developed to obtain the fracture parameters of concrete, including stress–crack opening relationship, cracking and tensile strength as well as fracture energy, from the results of a three-point bending test. Using this approach, the effects of coarse aggregate size (5–10, 10–16, 16–20 and 20–25 mm) and matrix strength (compressive strength of 40 and 80 MPa, respectively) on the fracture parameters are evaluated. For normal strength concrete, coarse aggregate size and cement matrix strength significantly influence the shape of σ–w curve. For a given total aggregate content, small aggregate size leads to a high tensile strength and a sharp post-peak stress drop. The smaller the coarse aggregate, the steeper is the post-peak σ–w curve. By contrast, in high strength concrete, a similar σ–w relationship is obtained for various aggregate sizes. The post-peak stress drop for high strength concrete is more abrupt than that for normal strength concrete. Also, the smaller the coarse aggregate size, the higher is the flexural strength. For both normal and high strength concrete, fracture energy and characteristic length are found to increase with increase of coarse aggregate size.  相似文献   

6.
Mg–xGd–0.6Zr (x = 2, 4, and 6% mass fraction) alloys were synthesized by semi-continuous casting process. The effects of gadolinium content and aging time on microstructures and mechanical properties of the Mg–xGd–0.6Zr alloys were investigated. The results show that the microstructures of the as-cast GKx (x = 2, 4, and 6%) alloys are typical grain structures and no Gd dendritic segregation. In as-cast Mg–6Gd–0.6Zr alloy, the second phases Mg5.05Gd, Mg2Gd, and Mg3Gd will form due to non-equilibrium solidification during the casting process, and these second phases will disappear after hot-extrusion. The residual compressive stress exists in alloys after extrusion and increases with increasing Gd content. The existence of residual compressive stress contributes to the tensile strength. The elongation of all extruded alloys is over 30%, and the ultimate and yield tensile strength of the Mg–6Gd–0.6Zr alloy are 237 and 168 MPa, respectively. After isothermal aging for 10 h, the strength of extruded Mg–6Gd–0.6Zr alloys increases slightly, however, the elongation of alloys rarely decreases. The fracture mechanism of all studied alloys is ductile fracture.  相似文献   

7.
8.
Surface modification processes are increasingly used to fully exploit material potential in fatigue critical applications because fatigue strength is sensitive to surface conditions. Nitriding is extensively adopted with ferrous materials because it forms a hard and strong surface layer and a system of superficial compressive residual stresses. Fatigue, however, is strongly dependent also on defects and inhomogeneity. When nitriding is applied to nodular cast iron, the relatively thin hardened layer (about 300 μm) contains graphite nodules (diameter of the order of 30 μm), casting defects and a heterogeneous matrix structure. The paper presents and discusses the influence of nitriding on the fatigue response and fracture mechanisms of nodular cast iron. A ferritic nodular cast iron and a synthetic melt with different content of effective ferrite were initially gas-nitrided. Then, (i) structural analysis of nitrided layers, (ii) fatigue testing with rotating bending specimens, and (iii) fatigue fracture surface inspection were performed. Performance and scatter in fatigue performance is discussed by selective inspection of fracture surfaces and identification fracture micromechanisms. A semiempirical model explains observed trends in test results and is used for the process optimization. __________ Translated from Problemy Prochnosti, No. 1, pp. 85–88, January–February, 2008.  相似文献   

9.
目的 研究钨极氩弧焊(TIG)和搅拌摩擦焊(FSW)对2219铝合金(母材)力学及疲劳性能的影响。方法 通过拉伸试验,得到了母材、TIG和FSW接头的抗拉强度和伸长率;通过疲劳性能试验测试了母材、TIG和FSW接头在不同应力下相应的疲劳寿命,根据疲劳试验结果绘制了其试样的S-N曲线;使用扫描电子显微镜观察并分析了疲劳断口的形貌特征。结果 未焊接的铝合金母材抗拉强度和伸长率最高,分别为506 MPa和15.92%;TIG接头抗拉强度和伸长率分别为330 MPa和7.65%,FSW接头抗拉强度和伸长率分别为310 MPa和8.74%。母材、TIG和FSW接头等3种疲劳试样在2×106次循环下的疲劳强度分别为129、108、115 MPa,其疲劳断口均可分为裂纹源区、裂纹扩展区和瞬间断裂区,疲劳裂纹分别起始于试样表面的局部变形区、第二相夹杂物和“吻接”缺陷。疲劳裂纹扩展区的主要形貌为疲劳辉纹和二次裂纹,瞬间断裂区以脆性断裂为主。结论 TIG和FSW等2种焊接工艺均导致了2219铝合金的强度、塑韧性和疲劳性能降低,其接头表面的第二相夹杂物和“吻接”缺陷促进了疲劳裂纹的萌生。  相似文献   

10.
A formula is derived for determining the influence of temperature and loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results of three-point bend specimens as well as introducing an Arrhenius formula. It is shown that the results obtained by the given formula are in good agreement with the experimental ones in the thermal activation region. The present method is also valuable to describe the relationship between dynamic fracture toughness and temperature and loading rate of other high strength low alloy steels.  相似文献   

11.
This study examined the mechanical property and formability of the cold-rolled Mg–Li–Zn alloy sheets with two different Li contents. Uniaxial tension and press-forming tests were carried out at room temperature. The tensile properties and formability parameters were correlated with the forming limit diagrams. The test results indicated that the Mg–Li–Zn alloy with a Li content of 6 wt% exhibited reasonable strength levels with moderate fracture elongation and that it did not show good stretchability and drawability at room temperature. The alloy with a Li content of 9 wt% presented excellent ductility even at room temperature and the strength levels were somewhat inferior. From the analysis, it was found that formability of the alloy with a higher Li content of 9 wt% was superior compared to that of the alloy with a Li content of 6wt%. Moreover, the fracture surfaces of the press-formed samples were considered and studied under a scanning electron microscope (SEM). The results showed that the partly ductile and partly brittle fracture pattern was observed in the tension–tension strain condition for both the alloys.  相似文献   

12.
Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate (V = 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient (G = 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional solidification furnace. The microhardness (HV) and tensile strength (σ) of alloy were measured from directionally solidified samples. The dependency of the microhardness, tensile strength for directionally solidified Zn–1.26 wt% Al alloy on the solidification parameters (G, V) and microstructure parameters (λ1, λ2) were investigated and the relationships between them were experimentally obtained using regression analysis. According to present results, the microhardness and tensile strength of directionally solidified Zn–1.26 wt% Al alloy increase with increasing solidification processing parameters and decrease with the microstructure parameters. Variations of electrical resistivity (ρ) with the temperature in the range of 300–650 K were also measured using a standard dc four-point probe technique for cast samples. The enthalpy of fusion and specific heat for same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid.  相似文献   

13.
For many years, a two‐parameter fracture criterion (TPFC) has been used to correlate and predict failure loads on cracked metallic fracture specimens. The current study was conducted to evaluate the use of the TPFC on a high‐strength aluminium alloy, using elastic‐plastic finite‐element (FE) analyses with the critical crack‐tip‐opening angle (CTOA) fracture criterion. In 1966, Forman generated fracture data on middle‐crack tension, M(T), specimens made of thin‐sheet 7075‐T6 aluminium alloy, which is a quasi‐brittle material. The fracture data included a wide range of specimen half‐widths (w) ranging from 38 to 305 mm. A two‐dimensional FE analysis code (ZIP2D) with a “plane‐strain core” option was used to model the fracture process with a critical CTOA chosen to fit the M(T) test data. Fracture simulations were then conducted on other M(T), single‐edge‐crack tension, SE(T), and bend, SE(B), specimens over a wide range in widths (w = 19‐610 mm). No test data were available on the SE‐type specimens. The results supported the TPFC equation for net‐section stresses less than the material proportional limit. However, some discrepancies in the FE fracture simulations results were observed among the numerical analyses made on the three specimen types. Thus, more research is needed to improve the transferability of the TPFC from the M(T) specimen to both the SE(T) and SE(B) specimens for quasi‐brittle materials.  相似文献   

14.
In this article, the effects of the enhanced solution treatment (EST) and high-temperature pre-precipitation (HTPP) on the microstructures, mechanical properties, and stress corrosion cracking resistance of an Al–Zn–Mg alloy have been investigated. The results indicated that EST and HTPP can substantially affect the microstructures of the alloy. The width of the continuously distributed grain boundary precipitates decreases after the EST, while the continuous grain boundary precipitation changes to a discontinuous precipitation structure after both the EST and HTPP. The yield strength, tensile strength, elongation, and fracture toughness of the specimens after the EST are much higher than those of the specimens only after traditional solution treatment, since the EST substantially decreases the size and volume fraction of the constituents. The stress corrosion cracking resistance of the specimens after both the EST and HTPP has been greatly improved due to the discontinuous distribution, and high Cu and low Mg concentrations of the grain boundary precipitates.  相似文献   

15.
High temperature deformation behavior of Al–5.9wt%Cu–0.5wt%Mg alloys containing trace amounts (from 0 to 0.1 wt%) of Sn was studied by hot compression tests conducted at various temperatures and strain rates. The peak flow stress of the alloys increased with increase in strain rate and decrease in deformation temperature. The peak stress could be correlated with temperature and strain rate by a suitable hyperbolic-sine constitutive equation. The activation energy for hot deformation of the alloy without Sn content was observed to be 183.4 kJ mol−1 which increased to 225.5 kJ mol−1 due to 0.08 wt% of Sn addition. The Zener-Hollomon parameter (Z) was determined at various deforming conditions. The tendency of dynamic recrystallization increased with low Z values, corresponding to low strain rate and high temperature. The peak flow stresses at various processing conditions have been predicted by the constitutive modeling and correlated with the experimental results with fairly good accuracy. It was possible to predict 80, 75, 100, 100, 90, and 85% of the peak stress values within an error less than ±13%, for the investigated alloys. With addition of Sn content >0.04 wt%, peak flow stress increased significantly for all strain rate and temperature combinations. Scanning electron microscope revealed two types of second phases at the grain boundary of the undeformed alloy matrix, one being an Al–Cu–Si–Fe–Mn phase while the other identified as CuAl2. The high strength and flow stress value of the alloy with 0.06 wt% of Sn content, may be attributed to the variation in amount, composition, and morphology of the Al–Cu–Si–Fe–Mn phase, as well as to the lower value of activation energy for precipitation reaction, as revealed from differential scanning calorimetric studies.  相似文献   

16.
The paper presents results of measurements of the resistance to tensile fracture at spallation in nickel, cobalt, stainless steel, AlMg6% alloy, and Inconel IN 738 LC alloy. In the experiments carried out with a high-power ion beam as a shock-wave generator the load pulse duration was in the range of 50 ns. The measurements were performed at peak stresses varying by a factor up to 2 which had no influence on the dynamic tensile strength of the materials tested. For cobalt and Inconel measurements were also done at elevated temperatures. Whereas the response of cobalt was practically insensitive to temperature, IN 738 LC demonstrated a transition from viscous to relatively brittle fracture accompanied by a significant increase of the spall strength at higher temperatures.  相似文献   

17.
The microstructure, tensile deformation and fracture behaviour of aluminium alloy 7055 were studied. Detailed optical and electron microscopy observations were made to analyse the as-received microstructure of the alloy. Detailed transmission electron microscopy observations revealed the principal strengthening precipitates to be the hexagonal disc-shaped η′ phase of size 2 mm×20 mm and fully coherent with the aluminium alloy matrix, the presence of spheroidal dispersoids, equilibrium grain-boundary η precipitates and narrow precipitate-free zones adjacent to grain-boundary regions. It is shown that microstructural characteristics have a profound influence on tensile deformation and fracture behaviour. Tensile test results reveal the alloy to have uniform strength and ductility in the longitudinal and transverse orientations. Strength marginally decreased with an increase in test temperature but with a concomitant improvement in elongation and reduction in area. No change in macroscopic fracture mode was observed with sample orientation. Fracture, on a microscopic scale, was predominantly ductile comprising microvoid nucleation, growth and coalescence. The tensile deformation and fracture process are discussed in the light of the competing influences of intrinsic microstructural effects, matrix deformation characteristics, test temperature and grain-boundary failure. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
The effects of Ag addition on the microstructure and thermal stability of 6156 Al–Mg–Si–Cu alloy were investigated by means of hardness measurement, tensile tests, differential scanning calorimetry, and transmission electron microscopy. The results showed that addition of small amount of Ag to 6156 alloy did not change the precipitation sequence mainly β″ and Q′ strengthening phase but slightly accelerated the age-hardening rate and increased peak hardness at the same aging condition. The tensile properties enhanced about 30 MPa at the room temperature or thermal exposure at lower temperature (<100 °C). With the exposed temperature and time increased to 150 °C for 1000 h, almost no difference between the Ag-containing and Ag-free alloys. When exposed at 200 °C, the tensile strength of Ag-containing alloy became lower than that of Ag-free alloy because of the coarsening precipitations in matrix and boundary observed by TEM observed. For both alloys, thermal exposure at temperatures 100 °C for long time periods had no significant effect on tensile properties. Loss in strength was small and large with prolonging the exposure time at 150 and 200 °C, respectively.  相似文献   

19.
The effect of the reverse cyclic straining and the creep loading on the resultant tensile mechanical properties, such as the strength parameter (σ0.2 and σb), the ductile parameter (δ and ϕf) and the composite parameter of the strength and ductility, the static toughness (Ut), for the precipitation-strengthened nickel-based superalloy GH4145/SQ used for high-temperature turbine and valve studs/bolts in power plant was investigated systematically at a temperature of 538°C. The experimental results show that in the case of the reverse cyclic straining both σ0.2 and σb increases at early stages of cyclic straining and, after reaching their saturated values, σ0.2 remains relatively constant until about 90% of fatigue life, while σb exhibits continuous reduction up to a level equal to the maximum applied stress amplitude. With the increasing number of straining cycles, both δ and ϕf as well as Ut decrease significantly until final fracture. In the case of creep loading the strength parameters (σ0.2 and σb) tend to increase, as a whole, while the ductile parameters (δ and ϕf) and the static toughness (Ut) exhibit continuous decrease characterization as the amount of the creep deformation increases. The variation of the aforementioned various tensile mechanical properties during cyclic straining and creep loading of the alloy was further discussed by means of the observations of the deformation microstructures as well as the examinations of the fracture features of the specimens.  相似文献   

20.
We study the influence of long-term loading on the behavior of physicomechanical characteristics of VT14 high-strength titanium alloy. The long-term holding of specimens (up to 21 yr) under loads close to the fracture load confirmed the stability of the long-term strength characteristics of the material. Institute of Technical Mechanics, National Academy of Sciences of Ukraine, Dnepropetrovsk, Ukraine. Translated from Problemy Prochnosti, No. 2, pp. 144–148, March–April, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号