首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
LM3-Eutro is a high-resolution eutrophication model with several improved features lacking in historical Great Lakes models. We calibrated LM3-Eutro using a 2-year (1994-1995) dataset and performed a hindcast simulation from 1976 to 1995 to evaluate the model's ability to make predictions over an extended period of time. Results show a reasonable agreement between model output and field data over this time period. The model predicted that an annual loading of 5600 metric tons (MT) would result in a lake-wide annual total phosphorus (TP) concentration of 7.5 μg L− 1. Using best estimates of future TP loadings, LM3-Eutro forecasts suggest that Lake Michigan will remain oligotrophic and will continue to meet the 7 μg L− 1 spring TP concentration Great Lakes Water Quality Agreement objective.  相似文献   

2.
As part of the U.S. Great Lakes Fish Monitoring and Surveillance Program (GLFMSP), more than 300 lake trout (Salvelinus namaycush) and walleye (Stizostedion vitreum vitreum) collected from the Laurentian Great Lakes each year from 2004 to 2009, have been analyzed for total toxaphene and eight selected congeners. The analytical results show fish toxaphene concentrations are quite different among lakes. Between 2004 and 2009, Lake Superior lake trout had the highest concentration (119 to 482 ng/g) and Lake Erie walleye had the lowest concentration (18 to 47 ng/g). Combining these results with the historical total toxaphene data (1977–2003), temporal changes were examined for each lake. Because of different analytical methods used in the previous studies, the historical data were adjusted using a factor of 0.56 based on a previous inter-method comparison in our laboratory. Trend analysis using an exponential decay regression showed that toxaphene in Great Lakes fish exhibited a significant decrease in all of the lakes with t1/2 (confidence interval) of 0.9 (0.8–1.1) years for Lake Erie walleye, 3.8 (3.5–4.1) years for Lake Huron lake trout, 5.6 (5.1–6.1) years for Lake Michigan lake trout, 7.5 (6.7–8.4) years for Lake Ontario lake trout and 10.1 (8.2–13.2) years for Lake Superior lake trout. Parlars 26, 50 and 62 were the dominant toxaphene congeners accounting for 0.53% to 41.7% of the total toxaphene concentration. Concentrations of these congeners generally also decreased over time.  相似文献   

3.
A detailed review of historical literature and museum data revealed that flathead catfish were not historically native in the Great Lakes Basin, with the possible exception of a relict population in Lake Erie. The species has invaded Lake Erie, Lake St. Clair, Lake Huron, nearly all drainages in Michigan, and the Fox/Wolf and Milwaukee drainages in Wisconsin. They have not been collected from Lake Superior yet, and the temperature suitability of that lake is questionable. Flathead catfish have been stocked sparingly in the Great Lakes and is not the mechanism responsible for their spread. A stocking in 1968 in Ohio may be one exception to this. Dispersal resulted from both natural range expansions and unauthorized introductions. The invasion is ongoing, with the species invading both from the east and the west to meet in northern Lake Michigan. Much of this invasion has likely taken place since the 1990s. This species has been documented to have significant impacts on native fishes in other areas where it has been introduced; therefore, educating the public not to release them into new waters is important. Frequent monitoring of rivers and lakes for the presence of this species would detect new populations early so that management actions could be utilized on new populations if desired.  相似文献   

4.
A study of changes in hydro-climatology of the Great Lakes was performed incorporating the nonparametric Mann–Kendall trend detection test and a recently developed Bayesian multiple change point detection model. The Component Net Basin Supply (C-NBS) and its components (runoff, precipitation, evaporation) as well as water levels of Great Lakes were analyzed for gradual (i.e. trend type) and abrupt (i.e. shift type) nonstationary behaviors at seasonal and annual scales. It was found that the C-NBS experienced significant upward trends only in the lower Great Lakes (Erie, Ontario) during the summer portion of the year. At an annual scale upward trends were observed only in Lake Ontario. Change point analysis suggested an upward shift in Great Lakes C-NBS in the late 1960s and early 1970s. A combination of gradual and abrupt change analysis of Great Lakes water levels indicated a common upward shift along with a change in trend direction around the early 1970s. It was also found that precipitation and runoff are on a plateau and in some cases on a decreasing course following an increasing trend in the early twentieth century. Results obtained from this study show that the hydro-climatology of Great Lakes is characterized by nonstationary behavior. Changes in this behavior have caused the Great Lakes water levels to decrease during the last few decades. This study provides valuable insights into the nature of the nonstationary behavior of hydro-climatic variables of Great Lakes and contributes useful information to the future water management planning.  相似文献   

5.
Michigan stream fish and macroinvertebrate community data from multiple sources were combined to conduct a statewide assessment of riverine ecological condition. Using regionally normalized metrics to correct for methodological inconsistencies and natural variation and statistically based scoring criteria, about 50% of all sampled sites were in expected or better ecological condition, 30% were ecologically impaired, and 20% were marginal. Structural Equation Modeling with this regional assessment dataset indicated that land use effects were more important than effects of point-source discharges. Biological metrics appeared to be more sensitive to urban than agricultural land use, and riparian than basin-wide agricultural land use. Invertebrate communities were marginally more sensitive than fish communities to the suite of anthropogenic stressors examined. Using the observed assessment status from sampled sites, Classification and Regression Tree models were used to estimate ecological condition in the state's remaining unsampled river segments. Combining observed and estimated site scores, 25% of the state's river kms were estimated to be impaired, with the Erie and St. Clair basins having the highest degree of impairment (52% and 44% of total channel lengths, respectively) and lakes Superior, Michigan, and Huron basins had the lowest degree of impairment at 4%, 21% and 31%, respectively. We argue that correlations between the state of the Great Lakes and the ecological conditions of their tributary systems reflect both direct impact transmission from watershed to receiving waters, and also non-causal correlation due to shared anthropogenic stressors.  相似文献   

6.
The Great Lakes basin ecosystem evolved after the retreat of the last ice sheet, about 10 000 years ago. Today, the complex of species present in the Great Lakes and much of the visible landscape bears little resemblance to that found some 400 years ago. Rather, the effects of various aspects of human development have caused major changes in the natural biodiversity. Lessons learned in the lower Great Lakes are applicable to many lakes around the world that have undergone agricultural, industrial and urban development in their drainage basins and have become managed, artificial ecosystems.  相似文献   

7.
The Great Lakes–St. Lawrence River Basin Water Resources Compact (the Compact) was created to protect future water supplies and aquatic ecosystems in the Great Lakes. The Compact requires the eight Great Lakes state to regulate, among other things, large withdrawals of groundwater and surface water so that they do not negatively affect stream flows and ecosystems within the Great Lakes Basin. Thus, the Compact raises the possibility of increased restrictions on groundwater withdrawals in many locations throughout the Great Lakes region. However, restricting withdrawals is likely to encounter opposition from water users when such restrictions are viewed as an infringement on existing water use rights and/or as negatively impacting local economic development. Such conflicts could hinder effective implementation of state and regional water policy. This paper explores the application of a market-based environmental management tool called “Conservation Credit Offsets Trading (CCOT)” that could facilitate allocation of groundwater withdrawals, and develops a framework for guiding the implementation of CCOT within the context of a groundwater permitting system. Using a watershed in southwestern Michigan, this study demonstrates how bio-physical information and input from various local stakeholders were combined to aid groundwater policy designed to achieve the objective of no net (adverse) impact on stream ecosystems. By allowing flexibility through trading of conservation credit offsets, this groundwater policy tool appears to be more politically acceptable than traditional, less flexible, regulations. The results and discussion provide useful lessons learned with relevance to other areas in the Great Lakes Basin.  相似文献   

8.
In recent decades, three important events have likely played a role in changing the water temperature and clarity of the Laurentian Great Lakes: 1) warmer climate, 2) reduced phosphorus loading, and 3) invasion by European Dreissenid mussels. This paper compiled environmental data from government agencies monitoring the middle and lower portions of the Great Lakes basin (lakes Huron, Erie and Ontario) to document changes in aquatic environments between 1968 and 2002. Over this 34-year period, mean annual air temperature increased at an average rate of 0.037 °C/y, resulting in a 1.3 °C increase. Surface water temperature during August has been rising at annual rates of 0.084 °C (Lake Huron) and 0.048 °C (Lake Ontario) resulting in increases of 2.9 °C and 1.6 °C, respectively. In Lake Erie, the trend was also positive, but it was smaller and not significant. Water clarity, measured here by August Secchi depth, increased in all lakes. Secchi depth increased 1.7 m in Lake Huron, 3.1 m in Lake Ontario and 2.4 m in Lake Erie. Prior to the invasion of Dreissenid mussels, increases in Secchi depth were significant (p < 0.05) in lakes Erie and Ontario, suggesting that phosphorus abatement aided water clarity. After Dreissenid mussel invasion, significant increases in Secchi depth were detected in lakes Ontario and Huron.  相似文献   

9.
In May 2017, the African Great Lakes community convened for a region-wide conference in Entebbe, Uganda. The African Great Lakes Conference (AGLC) focused on 6 regionally-important themes, and 300+ attendees presented over 100 talks and posters. The AGLC culminated in the adoption of a set of Conference Resolutions designed to direct the future of African Great Lakes conservation and management. As an Introduction to this Journal of Great Lakes Research special section on African Great Lakes, we report on the impetus for the African Great Lakes Conference as well as discuss three major advances and investments that were a direct result of conference resolutions adopted at the meeting. First, we present the AGLC Resolutions, a set of management issues and solutions developed at the conference. Second, we discuss the African Great Lakes Conference Fund, a conservation fund that has awarded $500,000 USD to launch four new initiatives. Finally, we describe African Great Lakes Inform, a knowledge management platform designed to promote collaboration in the region. The AGLC in general, and these three major conference outcomes specifically, provide a set of basic building blocks to advance partnerships, research and capacity in the African Great Lakes region.  相似文献   

10.
Phosphorus (P) losses from agricultural soils are a growing economic and water-quality concern in the Lake Erie watershed. While recent studies have explored edge-of-field and watershed P losses related to land-use and agricultural management, the potential for soils developed from contrasting parent materials to retain or release P to runoff has not been examined. A field-based study comparing eight agricultural fields in contrasting glacial landscapes (hummocky coarse-textured till-plain, lacustrine and fine-textured till-plain) showed distinct physical and geochemical soil properties influencing inorganic P (Pi) partitioning throughout the soil profile between the two regions. Fields located on the coarse-textured till-plain in mid-western Ontario, Canada had alkaline calcareous soils with the highest Total-Pi concentrations and the majority of soil Pi stored in an acid-soluble pool (up to 91%). In contrast, loosely to moderately soluble Pi concentrations were higher in soils of the lacustrine and fine-textured till-plain in southwestern Ontario, northeast Indiana and northwestern Ohio, US. Overall, soils on the lacustrine and fine-textured till-plain had a greater shrink swell-capacity, likely creating preferential flow to minimize Pi interaction with the more acidic, lower carbonate and lower sorption capacity soils. These differences in soil Pi retention and transport pathways demonstrate that in addition to management, the natural landscape may exert a significant control on how Pi is mobilized throughout the Lake Erie watershed. Further, results indicate that careful consideration of region-specific hydrology and soil biogeochemistry may be required when designing appropriate management strategies to minimize Pi losses across the lower Great Lakes region.  相似文献   

11.
12.
Benthic invertebrate biomonitoring has long been a tool of choice for assessing the impacts of anthropogenic stress in aquatic systems. The Oligochaete Trophic Index (OTI) is used by the U.S. EPA Great Lakes National Program Office to assess Great Lakes trophic status for State of the Great Lakes reporting under the Great Lakes Water Quality Agreement. OTI scores are based on pollution tolerances of ubiquitous profundal oligochaetes. OTI limitations include the fact that the index is based on a limited number of species belonging to a single oligochaete class, species assignment to trophic groups in the index were determined by best professional judgment and cannot be tested independently, and the index's correlation with lake productivity has not been evaluated. To address these concerns, we developed two new indices of Great Lakes water quality based on the OTI equation by: (1) expanding the number of oligochaete species included in the index and reassigning previous classifications of oligochaete species to trophic groups (improved OTI, or iOTI); and (2) adding non-oligochaete species to the OTI (modified Trophic Index, or mTI). Finally, we tested a modeling approach using Modern Analogue Technique (MAT) transfer functions based on species responses to a surface chlorophyll gradient to derive assessment of site trophic status and an independent assignment of species to trophic categories. We found that both iOTI and mTI had a stronger relationship with surface remote-sensed spring chlorophyll than did OTI, but MAT models had stronger correlations with chlorophyll than did any of the indices.  相似文献   

13.
Coastal wetlands in the Laurentian Great Lakes undergo frequent, sometimes dramatic, physical changes at varying spatial and temporal scales. Changes in lake levels and the juxtaposition of vegetation and open water greatly influence biota that use coastal wetlands. Several regional studies have shown that changes in vegetation and lake levels lead to predictable changes in the composition of coastal wetland bird communities. We report new findings of wetland bird community changes at a broader scale, covering the entire Great Lakes basin. Our results indicate that water extent and interspersion increased in coastal wetlands across the Great Lakes between low (2013) and high (2018) lake-level years, although variation in the magnitude of change occurred within and among lakes. Increases in water extent and interspersion resulted in a general increase in marsh-obligate and marsh-facultative bird species richness. Species like American bittern (Botaurus lentiginosus), common gallinule (Gallinula galeata), American coot (Fulica americana), sora (Porzana carolina), Virginia rail (Rallus limicola), and pied-billed grebe (Podilymbus podiceps) were significantly more abundant during high water years. Lakes Huron and Michigan showed the greatest increase in water extent and interspersion among the five Great Lakes while Lake Michigan showed the greatest increase in marsh-obligate bird species richness. These results reinforce the idea that effective management, restoration, and assessment of wetlands must account for fluctuations in lake levels. Although high lake levels generally provide the most favorable conditions for wetland bird species, variation in lake levels and bird species assemblages create ecosystems that are both spatially and temporally dynamic.  相似文献   

14.
Temperature influences the rates of many ecosystem processes. A number of recent studies have found evidence of systematic increases in Great Lakes surface water temperatures. Our study aims to construct empirical relationships between surface water temperatures and local air temperatures that can be used to estimate future water temperatures using future air temperatures generated by global climate models. Remotely sensed data were used to model lake-wide average surface water temperature patterns during the open-water period in Lakes Superior, Huron, Erie, and Ontario. Surface water temperatures typically exhibit linear warming through the spring, form a plateau in mid-summer and then exhibit linear cooling in fall. Lake-specific warming and cooling rates vary little from year to year while plateau values vary substantially across years. These findings were used to construct a set of lake-specific empirical models linking surface water temperatures to local air temperatures for the period 1995–2006. Hindcasted whole-lake water temperatures from these models compare favourably to independently collected offshore water temperatures for the period 1968–2002. Relationships linking offshore water temperatures to inshore water temperatures at specific sites are also described. Predictions of future climates generated by the Canadian Global Climate Model Version 2 (CGCM2) under two future greenhouse gas emission scenarios are used to scope future Great Lakes surface water temperatures: substantial increases are expected, along with increases in the duration of summer stratification.  相似文献   

15.
Dissolved organic matter (DOM) quality and the modifying influence of light on DOM bioavailability were investigated along a natural gradient of allochthonous influence in the lower Great Lakes. Using parallel factor analysis (PARAFAC), three DOM fluorophores were identified. One fluorophore, previously identified as peak C, was of allochthonous (component 1) origin and two previously uncharacterized fluorophores were identified as autochthonous (components 2 and 3). Component 1 was photoreactive and the dominant form in creek water samples while components 2 and 3 were dominant in Hamilton Harbour and lake water samples. Components 2 and 3 showed limited photoreactivity. Exposure to full spectrum irradiance decreased the average molecular weight of DOM (i.e., increased the absorbance ratio (a254:a365)) for all water samples. DOM bioavailability was lowest in creek and highest in lake water samples and was inversely related to DOM average molecular weight. Photomodification of DOM resulted in higher bacterial activity although these differences were not significantly different. This suggests that light plays a significant role in the cycling of terrestrially-derived DOM and to a certain extent autochthonous DOM, potentially increasing metabolism of both terrestrially and microbially derived DOM in the Great Lakes aquatic ecosystems.  相似文献   

16.
Stable isotope mass balance of the Laurentian Great Lakes   总被引:2,自引:0,他引:2  
    We investigate the physical limnology of the Laurentian Great Lakes of North America using a new dataset of 18O/16O and 2H/1H ratios from over 500 water samples collected at multiple depths from 75 stations during spring and summer of 2007. δ18O and δ2H values of each lake plot in distinct clusters along a trend parallel to, but offset from, the Global Meteoric Water Line, reflecting the combined effects of evaporative enrichment and the addition of precipitation and runoff along the chain lake system. We apply our new dataset to a stable-isotope-based evaporation model that explicitly incorporates downwind lake effects, including humidity build-up and changes to the isotope composition of atmospheric vapor. Our evaporation estimates are consistent with previous mass transfer results for Michigan, Huron, Ontario and Erie, but not for Superior, which has a much longer residence time. Calculated evaporation from Superior is ~300 mm per year, less than previous estimates of ~500 mm per year, likely arising from integration of the ‘isotopic memory' of lower evaporation rates under cooler climatic conditions with greater ice-cover than the present. Uncertainties in the estimates from the stable-isotope-based model are comparable to mass transfer results, offering an independent technique for evaluating evaporation fluxes.  相似文献   

17.
Establishment of nonindigenous species (NIS) has emerged as one of the leading environmental problems in the Great Lakes basin over the past quarter century. The purpose of this study was to assess responses by government agencies regarding allocation of funding to NIS projects between 2000 through 2005. NIS is considered a major and increasing problem by eight of ten major funding agencies in the basin. Despite this, total funding decreased from $5.1 to $3.2 million dollars per annum and the number of projects supported declined concomitantly from 145 to 98 during this period. Control or ecosystem effects received the greatest allotment of resources and represented the largest number of projects. Non-taxonomic specific topics, including risk assessment and ballast tank assessment and management, received more funding than any taxon-specific projects and comprised the majority of studies on prevention, spread, and socioeconomic impacts of NIS. Among the latter, fish and Dreissena mussels were the most popularly funded topics, and comprised the largest contribution to ecosystem effects and biology studies. Control studies principally addressed sea lamprey, round gobies and carp species. Prevention studies had the highest funding rate per capita ($ per study). Surprisingly, no clear shifts occurred with respect to the relative importance of projects pertaining to prevention over the period studied despite the recognized importance of this aspect of research.  相似文献   

18.
The Great Lakes form the largest freshwater island system in the world and provide breeding habitat for a large proportion of the continental population of double-crested cormorants (Phalacrocorax auritus). Here, cormorants have a high profile due to conflicts with humans; by 2007, most active (64%) breeding sites in U.S. waters were managed. This study used data from the U.S. Great Lakes Colonial Waterbird Database and The Nature Conservancy's Great Lakes Island GIS database to identify important features of breeding sites in the U.S. Great Lakes and broaden understanding of cormorant presence at the island-landscape scale. Islands 0.5–10 ha were used more frequently than expected, and most sites had remoteness values of ≤ 3 km. Colony size was positively correlated with years occupied and large colonies (> 1000 pairs) developed primarily (95%) on island sites > 1.0 ha. Sites supporting large colonies were more remote than those supporting smaller colonies. Presence of other colonial waterbird species, especially Herring Gulls (Larus argentatus), also characterized cormorant sites. Islands used by cormorants comprised a small proportion (n = 90, 3%) of the U.S. Great Lakes island resource, and < 1% of the total island area. Certain characteristics of breeding sites (e.g., small islands, proximity to mainland) may increase negative attitudes about cormorants. To understand cormorant impacts to island resources (e.g., vegetation; other colonial waterbird species), we suggest cormorant presence in the Great Lakes be considered in the broader context of island science, conservation and known threats, and at a landscape scale.  相似文献   

19.
A database of nearly 500 analyses of perchlorate in water samples from the Laurentian Great Lakes (LGL) watershed is presented, including samples from streams, from the Great Lakes and their connecting waters, with a special emphasis on Lake Erie. These data were assessed to test an earlier hypothesis that loading of perchlorate to the LGL watershed is relatively uniform. Higher perchlorate concentrations in streams in more developed and urban areas appear to indicate higher rates of loading from anthropogenic sources in these areas. Variable perchlorate concentrations in samples from Lake Erie indicate transient (un-mixed) conditions, and suggest loss by microbial degradation, focused in the central basin of that lake. Interpretation of the data included estimation of annual loading by streams in various sub-watersheds, and simulations (steady state and transient state) of the mass balance of perchlorate in the Great Lakes. The results suggest uneven loading from atmospheric deposition and other sources.  相似文献   

20.
Fish consumption advisories have been issued for the Great Lakes generally based on the most restrictive contaminant. For the Canadian waters of the Great Lakes, toxaphene causes minor restrictions only in Lake Superior, i.e., 3% of the total (restrictive + unrestrictive) advisories issued. However, the significance of the hazard posed by toxaphene in fish is not clear since more restrictive advisories due to other priority contaminants may be masking the less restrictive advisories. We simulated fish consumption advisories for the Toxaphene-only scenario by neglecting the presence of contaminants other than toxaphene, and compared with the issued advisories as well as with the published simulated Mercury-only scenario. Restrictive advisories under the Toxaphene-only scenario compared to the issued toxaphene related advisories would increase from 3% to 14%, < 1% to 4%, and 0% to 2% for Lakes Superior, Huron and Ontario, respectively, and remain at 0% for Lake Erie. For Lake Superior, most of the restrictive Toxaphene-only advisories would be for fatty fish. Overall, the Toxaphene-only advisories would be significantly less restrictive compared to the issued advisories, and also generally less restrictive compared to the Mercury-only scenario. These results suggest that toxaphene is less of a concern than PCBs (including dioxin-like PCBs), dioxins–furans and mercury from the perspective of health risk to humans consuming Great Lakes fish; elevated toxaphene is mainly a concern for human consumers of Lake Superior fatty fish. Our results suggest that the routine monitoring of toxaphene in other Canadian waters of the Great Lakes and Lake Superior lean/pan fish could be discontinued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号