首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
An external electric field was applied on the filter to improve its collection efficiency, and the collection efficiencies of the different filters under various conditions were evaluated. Dominant electrical filtration mechanisms for each condition were investigated using experimental and theoretical approaches. Four types of air filters were used as test filters: a charged fiber filter, a low-grade filter with 50% collection efficiency in the most penetration particle size (MPPS) zone, and two high-grade filters with more than 95% collection efficiency in the MPPS zone. Three different particle charge states—neutralized, single-charged and uncharged—were considered. For neutralized particles, the external electric field led to a 14.5%p. and 2.5%p. increase in the collection efficiencies of the low-grade filter and charged fiber filter, respectively. With the electric field, the collection efficiency of the low-grade filter increased by 30%p. for single-charged particles. The electric field also affected the collection efficiencies of the charged filter and high-grade filters, but the effect was not significant. For uncharged particles, the electric field did not lead to a remarkable increase in the collection efficiencies of any of the filters. Through experimental and theoretical analysis, it was found that the polarization force imposed on the charged fiber was the dominant factor for the charged fiber filter regardless of application of the external electric field. The Coulombic force imposed on the electric field was the dominant factor for the low-grade filter, while both the Coulombic and the polarization forces affected the collection efficiency of the high-grade filter.

Copyright © 2017 American Association for Aerosol Research  相似文献   


3.

In this study, we developed a simulation method to predict the initial collection efficiency of a unipolar charged fiber and the particle deposition morphology in the electret filter composed of unipolar charged fibers. The particle sizes considered in this study were in the submicron range, and in the simulation method, Brownian motion of particles was also taken into consideration along with electrostatic forces acting on the particles. The simulation results were compared with other investigator's initial collection efficiency data, and it was found that simulation results are in good agreement with the experimental data. Based on this, we analyzed the effect of operating variables on the particle deposition morphology, which in turn affects the collection efficiency and pressure drop of the filter. In view of the simulation results on particle deposition morphology, it is clear that in the case of electret filters, particle deposition tends to take place onto the entire perimeter of fibers relatively uniformly, which may reduce the increase of pressure drop with time or extent of particle deposition compared to the conventional fibrous filter.  相似文献   

4.
《Journal of aerosol science》2003,34(11):1493-1504
Electret filters are composed of permanently charged electret fibers and are widely used in applications requiring high collection efficiency and low-pressure drop. We tested electret filter media used in manufacturing cabin air filters by applying two different charging states to the test particles. These charging states were achieved by spray electrification through the atomization process and by bipolar ionization with an aerosol neutralizer, respectively. Polydisperse solid NaCl particles with 0.1%, and 1% solutions or liquid dicotyl sebacate (DOS) particles were generated from an atomizer, and they were loaded on the filter media. The amount of charge, the mean particle size, and the particle material significantly affected the collection performance of the electret filter media for submicron particles. The collection efficiency of the electret filter media degraded as more particles were loaded, and showed minimum efficiency at steady state. The electret filter media captured the highly charged particles more efficiently during the transient state. At steady state, the filter media loaded with smaller NaCl particles showed lower collection efficiency. The filter media loaded with liquid DOS particles showed collection efficiency much lower than those loaded with solid NaCl particles.  相似文献   

5.
Nanofibers for fine dust filters of four structures (random, aligned, orthogonal, and nanofiber net) were prepared by electrospinning method using polymers such as PAN and PA6. While conventional electret filters experienced deterioration problems in fine dust(PM1.0) capture as its surface charge decayed, the electrospun nanofibers prepared contributed to the removal capacity. The filters from aligned fibers showed high quality factors ( q F : filter performance indicator) and filtration efficiency from 22 to 50% depending on particle size than simple electret media at a face velocity of 15.92 cm/s. The fiber structure of nanofiber net (NFN) presented almost absolute collection efficiency, particularly on dust particles smaller than 300 nm. Furthermore, the composite filters which are composed both of a commercial electret mask filters and nanofiber nets effectively enhanced the overall filtration efficiency by 59.46%, resulting in more than 99% for PM1.0. Consequently, electrospun polymer nanofibers offer a promising plausible mask filter material with air permeability. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48166.  相似文献   

6.
The flow field through a staggered array of parallel, rectangular split-type electret fibers was numerically modeled. The particle trajectory and the collection efficiency were simulated by solving the equation of particle motion, taking into account the effects of diffusion, interception, inertial impaction, and electrostatic forces. The model was validated against results calculated from semiempirical expressions. The model was applied to investigate the role of the inertial impaction and the interception mechanisms in the particle collection by an electret fiber, the particle trajectories under various filtration conditions, the effect of the aspect ratio of the rectangular fiber on the filter penetration, and the distribution of the deposited particles on the surface of the fiber. The simulated results indicate that the inertial impaction and interception mechanisms account for a major portion of neutral particles collected by an electret fiber when the Stokes number is higher than 0.5. For neutral particles, fibers with an aspect ratio of 38/10 have almost the same penetration as fibers with an aspect ratio of 10/38; while for singly charged particles, fibers with an aspect ratio of 38/10 achieve a much lower penetration when the electrophoretic collection mechanism dominates. In addition, it is predicted that a filter composed of fibers with an aspect ratio of 38/10 will result in a lower flow resistance and thus a slower clogging process when the dielectrophoretic collection mechanism dominates.  相似文献   

7.

The effects of electrohydrodynamic (EHD) flow and turbulent diffusion on the collection efficiency of particles in a model ESP composed of the plates with a cavity were studied through numerical computation. Electric field and ion space charge density in the ESP were calculated by the Poisson equation of electric potential and the current continuity equation of ion space charge. The EHD flow field was solved by the continuity and momentum equations of gas phase, including the electrical body force induced by the movement of ions under the electric field. RNG k - l model was utilized to analyze turbulent flow. Particle concentration distribution was calculated from the convective diffusion equation of particle phase. As the ion space charge increased, the collection efficiency of charged particles increased because the electric potential increased over the entire domain in the ESP. The collection efficiency decreased as the EHD flow became stronger when the electrical migration velocity of charged particles was high. However, the collection efficiency could increase for the stronger EHD flow when the electrical migration velocity of charged particles was relatively lower. Also, the collection efficiency decreased as the turbulent diffusion of particles increased when the electrical migration velocity of particles was high. However, the collection efficiency could increase with the turbulent diffusion when the electrical migration velocity of particles was relatively lower.  相似文献   

8.
Aerosol collection efficiency was studied for electrostatically charged fibrous filters (3M Filtrete?, BMF-20F). In this study, collection efficiencies at moderate filter face velocities (0.5–2.5 m/s) representative of some high volume sampling applications was characterized. Experimental data and analytical theories of filter performance are less common in this flow regime since the viscous flow field assumption may not be representative of actual flow through the filter mat. Additionally, electrostatic fiber charge density is difficult to quantify, and measurements of aerosol collection efficiency are often used to calculate this fundamental parameter. The purpose of this study was to assess the relative influence of diffusion, inertial impaction, interception, and electrostatic filtration on overall filter performance. The effects of fiber charge density were quantified by comparing efficiency data for charged and uncharged filter media, where an isopropanol bath was used to eliminate electrostatic charge. The effects of particle charge were also quantified by test aerosols brought into the equilibrium Boltzmann charge distribution, and then using an electrostatic precipitator to separate out only those test particles with a charge of zero. Electrostatically charged filter media had collection efficiencies as high as 70–85% at 30 nm. Filter performance was reduced significantly (40–50% collection efficiency) when the electrostatic filtration component was eliminated. Experiments performed with zero charged NaCl particles showed that a significant increase in filter performance is attributable to an induction effect, where electrostatic fiber charge polarizes aerosol particles without charge. As filter face velocity increased the electrostatic filtration efficiency decreased since aerosol particles had less time to drift toward electrostatically charged fibers. Finally, experimental data at 0.5 m/s were compared to theoretical predictions and good agreement was found for both electrostatic and nonelectrostatic effects.

© 2013 American Association for Aerosol Research  相似文献   

9.
Abstract

A new type of resin wool filter (RWF) that persists the load with oil droplets was developed by Kimura and colleagues. In the present work, the initial collection performances of RWF (A and C) are measured for various particle sizes (0.03, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 μm) with different charging states at various filtration velocities (0.05, 0.1, 0.15, and 0.3 m/s). As a result, it is shown that the present RWF impregnated with PTBP resin can attain high collection efficiency (99.999% at filtration velocity of 0.05 m/s) with a pressure drop of less than 30 Pa. The charge density is estimated by applying prediction equations of single-fiber collection efficiencies of electret filters with a dipolar charge distribution because no other prediction equation for RWF are available at present. The experimental single-fiber efficiencies for uncharged particles are successfully predicted by assigning a single value of charge density in the prediction equations for dipolar fibers. The estimated charge density on RWF fibers is 2.1 × 10? 4 C/m2, which is much higher than those of conventional electret filter media. Therefore, RWF studied in the present work is suitable for the application to respirators as well as room air cleaners.  相似文献   

10.
纤维水膜极板表面颗粒沉积脱落特性   总被引:1,自引:1,他引:0       下载免费PDF全文
常景彩  王翔  王鹏  崔琳  李军  李宗强  马春元 《化工学报》2018,69(10):4302-4310
以极板表面荷电颗粒电子传递及离子定向迁移为基础,对纤维极板表面沉积颗粒粒径分布、粉尘层堆积形貌、颗粒沉积脱落过程及关键影响因素等进行了研究,并与金属极板进行对比。结果表明:静电场同一位置处(取样点15),纤维极板表面沉积颗粒物的粒度(6.900 μm)小于金属极板(9.018 μm),纤维水膜极板对颗粒物的捕集效率更高;与金属极板不同,纤维水膜极板表面粉尘层堆积形貌与电晕电流密度分布无明显关联性。荷电颗粒是以纤维束凸出处为沉积中心,沉积并聚集成球或链珠状,粉尘层厚薄随机且分布松散;纤维极板液体表面浸润和内部扩散,减小了纤维极板表面与粉尘层间静电力,增大了粉尘层内颗粒间黏结力;流动曳力、液桥力、静电力、重力是纤维极板控制粉尘层脱落的关键因素。  相似文献   

11.
利用计算流体动力学(Computational Fluid Dynamics,CFD)对驻极体过滤器内的气-固两相流动特性进行数值研究,计算了过滤器内部电场的分布及带电颗粒经过驻极体过滤器时的压力损失和渗透率。结果表明:对于颗粒粒径dp≤0.1μm的颗粒,静电力在其捕集过程中占主导作用;随着粒径的增加,静电力的影响逐渐减弱。对于粒径范围在0.05~0.5μm的颗粒,驻极体过滤器的渗透率随迎面风速的增大而增大。另外,从驻极体过滤器内颗粒运动轨迹可以看出,在驻极体过滤器的背风面有带电颗粒的沉积,这种颗粒沉积可能是驻极体过滤器低渗透率,低阻力的主要原因之一。  相似文献   

12.

The use of electric image forces for collection of uncharged aerosols by two- and three-dimensional arrays of charged drops is considered. Trajectories of aerosols are simulated using an algorithm for transformation of electric image forces and flow field from spherical coordinate systems of the drops to the central system, where the equation of motion is solved. Radius and efficiency of collection of aerosols, as a function of the number of rows of drops, are presented for different geometries and charge levels. The nature of the weak image force dictates the need to use a charge level closer to the Rayleigh limit and optimized array geometries. Inertial effects that enhance dispersive modes, of otherwise convergent trajectories, become significant for aerosols as small as 20 w m. In this case, multiple values of radius of collection and collection efficiency can be obtained for the same number of rows. Geometries with no shifts between rows of drops are shown to be inferior to those involving a larger shift. The former geometries require a substantially larger number of rows for a prescribed level of collection and may not facilitate complete collection. Systems of uncharged drops and charged aerosols behave similarly to those with charged drops and uncharged aerosols. Three-dimensional arrays can be more efficient than two-dimensional ones, provided that weakness planes, where aerosols show deep penetration, are eliminated by appropriate shifts of rows. A decrease of the drop size at a fixed volume fraction with the charge set at its Rayleigh limit enhances the collection efficiency. Finally, the random model of collection, using the exponential distribution, is recast in order to accommodate for the effect of the order of the array and the deterministic nature of the aerosol trajectories.  相似文献   

13.
14.

The trajectories of fine aerosol particles in the vicinity of a free falling collector droplet and their deposition on it were investigated numerically by solving the equations of motion of the particle and the droplet in quiescent air. The droplet was assumed to be charged to one half of the Rayleigh limit. The Coulomb, image, Stokes, inertial, and gravitational forces acting upon the particle near the droplet were taken into consideration in the equations of motion. The equations of the droplet motion were also incorporated into the set of equations including the Coulomb and image forces on the droplet due to the particle charge. The flow field in the vicinity of the droplet was determined by numerical solution of the Navier-Stokes equations. The equations of particle motion were solved in threedimensional (3-D) space by the Runge-Kutta method of the fourth order. The collection efficiency of the particles on the droplet was determined by searching the limiting trajectory within the entire space. The results for particles charged to 10 elementary charges of the same and opposite polarity as the droplet, as well as the electrically neutral ones, were compared. The assumption on the charge of the particle was rather arbitrary. It was assumed that particles are not intentionally charged but only possess a charge generated by tribocharging due to random contacts and were independent of the particle size. Charging the collector causes the Coulomb forces between these 2 species to improve particle deposition on the droplet and in this way the aerosol is removed from the gas. For the aerosol particles charged to the same polarity as the collector, the collection efficiency is still higher than for uncharged particles due to the action of the image forces. In this case, the collection efficiency increases for smaller droplets and for particles with increasing diameter.  相似文献   

15.
This study reports on the effects of BaTiO3—a high dielectric constant additive—addition on charging and filtration properties of meltblown polypropylene (PP) electret filters. Since electrostatic capture efficiency of electret filters is mainly dependent on electrical forces, surface potential and aerosol filtration properties were analyzed and compared. Due to quasi-permanent nature of electret property, stability of charging and filtration performance was also investigated via following an isothermal charge decay procedure. Addition of BaTiO3 did not alter fiber morphology significantly. Particularly, the stability of electrostatic filtration performance was found to be promising with the addition of BaTiO3. Possible microstructural changes after addition of BaTiO3 were investigated via wide angle X-ray diffraction. Changes in crystal structure of PP upon addition of BaTiO3 did not deteriorate electrostatic properties.

Copyright 2015 American Association for Aerosol Research  相似文献   

16.
The purpose of this study was to compare the performance efficiency of melt-blown and currently used glass fiber filter media under the same environmental conditions. To evaluate filter efficiency, filter class was determined according to ISO and European standards (EN 1822-1:2009) using an automated filter tester (0.3 μm size), taking into account particle filtration, fractional efficiency for negative pressure devices, and consumption of electrical power. The average fractional efficiency, quality factor (QF), fractional efficiency by dust loading amount, pressure by dust loading amount, and QF by dust loading amount were higher in the case of melt-blown media than in the case of glass fiber filters. The fractional efficiency of hydrocharged melt-blown filters was higher than that of uncharged media. Based on performance efficiency, melt-blown filters are more effective high efficiency particulate air filters than glass fiber media.

Copyright © 2018 American Association for Aerosol Research  相似文献   


17.
Particle deposition and reentrainment experiments were performed in a two-stage electrostatic precipitator (ESP), consisting of positive corona precharger and collecting electrode sections. Attention was focused on studying the indoor air pollution deposition and reentrainment into six size ranges from 0.3 to >10?μm. Tests were performed in an office room (200?m3) for airflow velocities from 1.4 to 8?m/s. The effect of airflow velocity on the collection efficiency of the ESP was investigated both experimentally and analytically to study reentrainment phenomena in a turbulent flow. A stationary two-dimensional analytical model was carried out by modeling the particle transport. The boundary conditions for charged particles on collecting and repelling electrodes were determined by physical considerations, including chaotic and drift motions, the reflection of charged particles from a surface, and the reentrainment of charged particles. A decrease in the experimental collection efficiency for large particle diameters (≥0.5?μm), as compared to the theoretical prediction, was interpreted as the reentrainment of particles. The size-resolved dust reentrainment fluxes from the collecting electrode were evaluated in two limiting cases, considering that either the reentrained particles are not charged or that they are charged as the particles in the deposition flux. Dimensional analysis is applied to these results, introducing the wall friction velocity as a universal parameter that determines the flow character. In general, the particles with diameters <5?μm and >5?μm exhibit different reentrainment behavior.

Copyright © 2018 American Association for Aerosol Research  相似文献   

18.
The effect of image force on the penetration of nanometer particles through metal grids remains a controversial issue. Experimental evidence of the existence and of the absence of such effect have both been reported in the past. A careful experimental work to measure penetration of particles in the mobility equivalent diameter range between 3.4 and 10 nm has been carried out. The possible particle size change between the aerosol generator and the filter has been considered, as well as the possible effect of particle number concentration on the filtration efficiency. The geometric dimensions of the filter allowed attainment of the fully developed parabolic flow velocity profile upstream the grid. Measurements were done at two values of the fiber Reynolds number, 0.09 and 0.12, much smaller than 1, as demanded by the currently accepted filtration theory. Penetration of charged particles, measured in three alternative ways, has been compared with penetration of uncharged and neutral particles (the latter consisting of a mixture of positive, negative, and uncharged particles). Two main conclusions have been reached: (1) the charging state of the particles does not affect their penetration through the metal grid and (2) the experimentally measured penetrations are fairly well predicted by the fan filter model of Cheng and Yeh.

Copyright © 2018 American Association for Aerosol Research  相似文献   


19.
A modified version of the previously developed tubular particle-removal device based on the UV/photoelectron method (Shimada et al. (1997) J. Aerosol Sci. 28, 649) is manufactured to investigate removal efficiency of aerosol particles suspended in air at a reduced pressure down to 20 torr. The present measurements with monodisperse particles of 0.458 μm in diameter show the dependence of the removal efficiency on pressure, flow rate and electric field in the electrostatic precipitation device. To predict the removal efficiency, a theoretical analysis for the particle collection processes in the precipitator is made, in which particle charging by negative ions, and particle transport by air flow, diffusion and electrical migration are numerically calculated taking into account the effects of reduced pressure. The calculated results reproduce the measured removal efficiencies well. It is found in the calculation that the Fuchs’ approach to ionic particle charging needs modification to predict charging of highly charged particles by ions of the same polarity. It is also demonstrated that the removal efficiency is increased to 100% when the precipitator is equipped with an additional set of electrodes that collects charged particles.  相似文献   

20.
A Monte Carlo simulation method based on particle trajectory calculations is used to study the effect of a uniform electrical field on the dendritic deposition of uncharged dielectric aerosol particles on uncharged dielectric fibres. The system parameters are chosen so that the main mechanisms of deposition are interception and electrical attraction. The main electrical force on an oncoming particle is that exerted by the polarized fiber and dendrites. It is found that simple superposition of the electrical fields of the polarized fibre and of the individual deposited particles gives an approximation to the actual field that is adequate for practical purposes. Based on such superposition, particle trajectories are calculated and the dendritic deposition phenomenon is studied. The effects of the electrical field are found to be very important and to increase with increasing field strength. In general, the electrical field increases the number of dendrites per unit length of fibre, and produces dendrites which are long, slender and tend to follow the force lines of the electrical field. The enhancement of the overall rate of deposition is also drastic and increases with increasing electrical field strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号