首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerium oxide is a major additive in three-way catalysts used in emission control of automobile exhaust. Pt/CeO2 was studied in order to better understand the role of ceria in promoting CO oxidation reaction. The kinetics of carbon monoxide oxidation on Pt/cerium oxide catalyst, was studied over the temperature range 100–170°C. Steady state kinetic measurements of CO oxidation were obtained in a computer controlled micro-CSTR reactor. Activation energies were reported to vary between 39·5 and 51·2 kJ mol−1. At low concentrations of either reactant (CO, O2) and total conversion, the catalyst exhibited multiple steady states, similar to the multiplicity behavior of Pt/Al2O3. The total conversion was reached at 120°C. In comparison, the total conversion at low reactant concentrations was reached at a temperature of 148°C for the alumina-supported catalyst. Langmuir–Hinshelwood mechanisms gave a good fit to the data. However, no single rate expression could effectively describe the CO oxidation data over the whole concentration in the product of the CSTR reactor. The facts gathered indicate that oxygen adsorbed on interfacial Pt/Ce sites and ceria lattice oxygen provides oxygen for CO oxidation. Cerium oxide has been found to lower CO oxidation activation energy, enhance reaction activity and tends to suppress the usual CO inhibition effect.  相似文献   

2.
Methanol oxidative dehydrogenation to formaldehyde over a Fe-Mo oxide catalyst was studied experimentally in three reactor configurations: the conventional fixed-bed reactor (FBR) and the packed-bed membrane reactor (PBMR), with either methanol (PBMR-M) or oxygen (PBMR-O) as the permeating component. The kinetics of methanol and formaldehyde partial oxidation reactions were determined independently from FBR experiments. A steady state plug-flow PBMR model, utilizing these kinetics and no adjustable parameters, fit the experiments accurately. It is shown experimentally and in accordance with the model that for given overall feed conditions, the reactor performance for methanol conversion and formaldehyde yield is in the order PBMR-M < FBR < PBMR-O.  相似文献   

3.
Utilizing a combination of molecular beam techniques and scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions we have studied the interaction of oxygen with an alumina-supported Pd model catalyst as well as the influence of the oxygen pretreatment on the kinetics of the CO oxidation reaction. The Pd particles were deposited by metal evaporation in UHV onto a well-ordered alumina film prepared on a NiAl(110) single crystal. The particle density, morphology and structure are determined by STM both immediately after preparation and after oxygen adsorption and CO oxidation. The oxygen sticking coefficient and uptake in the temperature regime between 100 and 500 K and the kinetics of the CO oxidation reaction are quantitatively probed by molecular beam techniques. It is found that starting at temperatures below 300 K the Pd particles rapidly incorporate large amounts of oxygen, finally reaching stoichiometries of PdO>0.5. STM shows, that neither the overall particle shape nor the dispersion is affected by the oxygen and CO treatment. Only after saturation of the bulk oxygen reservoir are stable CO oxidation conditions obtained. In the low-temperature regime (<500 K), only the surface oxygen, but not the bulk and subsurface oxygen is susceptible to the CO oxidation. The activation energies for the Langmuir–Hinshelwood step of the CO oxidation reaction were determined both in the regime of high CO coverage and high surface oxygen coverage. A comparison shows that the values are consistent with previous Pd(111) single crystal results. Thus, we conclude that, at least for the particle size under consideration in this study (5.5 nm), the LH activation energies are neither affected by the reduced size nor by the oxygen pretreatment.  相似文献   

4.
The deactivation of Cu/ZnO catalyst during methanol dehydrogenation to form methyl formate has been studied. The Cu/ZnO catalyst was seriously deactivated under the reaction conditions: various temperatures of 493, 523 and 553 K, atmospheric pressure and methanol GHSV of 3000 ml (STP)/g-cat h. The weight loss due to reduction of ZnO in the Cu/ ZnO catalyst was monitored by a microbalance. X-ray induced Auger spectroscopy of Zn(L3M4,5M4,5) showed the increase in the concentration of metallic Zn on the catalyst surface after the reaction. Temperature-programmed reduction (TPR) of the Cu/ZnO catalyst with methanol demonstrated that the reduction of ZnO in Cu/ ZnO was suppressed by introduction of CO2 into the stream of helium-methanol. As the concentration of CO2 in the feed gas increased, the weight loss of the Cu/ZnO catalyst due to the reduction of ZnO decreased. The deactivation of the Cu/ZnO catalyst in the methanol dehydrogenation was also retarded by the addition of CO2. In particular, oxygen injection into the reactant feed regenerated the Cu/ ZnO catalyst deactivated during the reaction. Based on these observations, the cause of deactivation of the Cu/ZnO catalyst has been discussed.  相似文献   

5.
Combining multi molecular beam (MB) experiments and in-situ time-resolved infrared reflection absorption spectroscopy (TR-IRAS), we have studied the formation and catalytic activity of Pd oxide species on a well-defined Fe3O4 supported Pd model catalyst. It was found that for oxidation temperatures up to 450 K oxygen predominantly chemisorbs on metallic Pd whereas at 500 K and above (~10−6 mbar effective oxygen pressure) large amounts of Pd oxide are formed. These Pd oxide species preferentially form a thin layer at the particle/support interface. Their formation and reduction is fully reversible. As a consequence, the Pd interface oxide layer acts as an oxygen reservoir providing oxygen for catalytic surface reactions. In addition to the Pd interface oxide, the formation of surface oxides was also observed for temperatures above 500 K. The extent of surface oxide formation critically depends on the oxidation temperature resulting in partially oxidized Pd particles between 500 and 600 K. It is shown that the catalytic activity of the model catalyst for CO oxidation decreases significantly with increasing surface oxide coverage independent of the composition of the reactants. We address this deactivation of the catalyst to the weak CO adsorption on Pd surface oxides, leading to a very low reaction probability.  相似文献   

6.
The oxidation of carbon monoxide by molecular oxygen on a single crystal Cu(100) catalyst was studied at 458 K using reactant gas mixtures with CO/O2 ratios of 2/1, 10/1 and 25/1 at a total pressure of 10 Torr. The catalytic activities were found to be strongly dependent upon the CO/O2 ratio. Under stoichiometric reaction conditions (CO/O2 = 2), the initial CO oxidation activity decreased sharply; with a highly reducing reaction mixture (CO/O2 = 25), the initial activity gradually increased. These changes in catalytic activities with reactant gas mixture composition correlate with changes in surface composition, namely an increase in the surface oxygen coverage. Post-reaction TPD revealed the presence of a carbonate-like species which decomposed at ca. 630 K.  相似文献   

7.
The CH4 direct oxidation reaction was studied at 600°C by the pulse-MS transient method over the Ni/La2O3 catalyst. Over the freshly prepared catalyst (which contains NiO), the CO selectivity and CH4 conversion increased and attained constant values as the number of CH4/O2 pulses increased. Over the reduced catalyst (containing Ni), as the number of CH4/O2 pulses increased, the CO selectivity and CH4 conversion decreased before they reached the same constant values as over the fresh catalyst. The CO selectivity increased as the residence time of the reactants shortened, implying that CO was directly generated without the preformation of CO2. The activation energies of CH4 dehydrogenation in the presence and absence of oxygen have been calculated using the bond-order conservation Morse-potential approach. The results indicate (1) the direct dehydrogenation steps are more likely to occur; (2) the transient oxygen species adsorbed on-top of the metal atoms promote dehydrogenation; (3) the oxygen species adsorbed on bridge or hollow sites do not promote dehydrogenation.  相似文献   

8.
The effect of gas phase O2 and reversibly adsorbed oxygen on the decomposition of CH4 and the surface state of a Ni/Al2O3 catalyst during partial oxidation of CH4 were studied using the transient response technique at atmospheric pressure and 700°C. The results show that, when the catalyst surface is completely oxidized under experimental conditions, only a small amount of CO and H2 can be produced from non‐selective oxidation of CH4 by reversibly adsorbed oxygen which is more active in oxidizing CH4 completely than NiO via the Rideal–Eley mechanism and both the conversions of CH4 and O2 and the selectivities to CO and H2 are very low. Therefore, keeping the catalyst surface in the reduced state is the precondition of high conversion of CH4 and high selectivities to CO and H2. The surface state of the catalyst decides the reaction mechanism and plays a very important role in the conversions and selectivities of partial oxidation of CH4. During partial oxidation of CH4, no oxygen species but a small amount of carbon exists on the catalyst surface, which is favorable for maintaining the catalyst in the reduced state and the selectivity of CO. The results also indicate that direct oxidation is the main route for partial oxidation of CH4, and the indirect oxidation mechanism is not able to gain dominance in the reaction under the experimental conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
《Fuel》1986,65(10):1371-1376
The kinetics of CO2 gasification of carbon, catalysed by Na, K, Rb and Cs is adequately described by a two step model in which the first step represents a reversible oxidation of the carbon and the second, a rate determining step, the release of CO from the carbon matrix. The catalyst only increases the steady state concentration of oxygen at the carbon surface. The activation energy of the second step is 20–40 kJ mol−1 lower than for the uncatalysed reaction. The reaction rate is independent of the CO2 pressure over a range of 4–30 bar, increases with catalyst loading and in the period order Na < K < Rb < Cs. In case of Na the number of active sites probably increases with temperature due to carbonate decomposition.  相似文献   

10.
An integrated surface science approach towards metal oxide catalysis   总被引:1,自引:0,他引:1  
The function of a metal oxide catalyst was investigated by an integrated approach, combining a variety of surface science techniques in ultrahigh vacuum with batch reactor conversion measurements at high gas pressures. Epitaxial FeO(111), Fe3O4(111) and α‐Fe2O3(0001) films with defined atomic surface structures were used as model catalysts for the dehydrogenation of ethylbenzene to styrene, a practized selective oxidation reaction performed over iron‐oxide‐based catalysts in the presence of steam. Ethylbenzene and styrene adsorb onto regular terrace sites with their phenyl rings oriented parallel to the surface, where the π‐electron systems interact with Lewis acidic iron sites exposed on Fe3O4(111) and α‐Fe2O3(0001). The reactant adsorption energies observed on these films correlate with their catalytic activities at high pressures, which indicates that the surface chemical properties do not change significantly across the pressure gap. Atomic defects were identified as catalytically active sites. Based on the surface spectroscopy results a new mechanism was proposed for the ethylbenzene dehydrogenation, where the upward tilted ethyl group of flat adsorbed ethylbenzene is dehydrogenated at Brønsted basic oxygen sites located at defects and the coupling of the phenyl ring to Fe3+ terrace sites determines the reactant adsorption–desorption kinetics. The findings are compared to kinetic measurements over polycrystalline catalyst samples, and an extrapolation of the reaction mechanism found on the model systems to technical catalysts operating under real conditions is discussed. The work demonstrates the applicability of the surface science approach also to complex oxide catalysts with implications for real catalysts, provided suitable model systems are available.  相似文献   

11.
The kinetics and mechanism of methanol adsorption and oxidation on real Pt/Ru (1:1) electrodes were investigated. In model electrode systems, the addition of supporting proton-conducting electrolyte is necessary. Therefore, the influence of sulphuric acid on the kinetics of methanol adsorption and oxidation was also investigated. It turns out that the steady state adsorption is not significantly affected by the addition of sulphuric acid. However, if sulphuric acid is used as an additional electrolyte, the rate of methanol adsorption and steady state oxidation decreases, whereas the active surface of the catalyst increases. The mechanism of methanol oxidation is not affected by the addition of sulphuric acid. At low potentials, the adsorption of methanol is found to be much faster than its oxidation. Hence, the oxidation of the methanol intermediate species is believed to be the rate-determining step under these conditions. This result is confirmed by apparent orders of reaction of about 0.5. At potentials in the range of 0.3–0.5 V, a mixed activation-adsorption control is supposed, whereas at potentials more positive than 0.5 V, the adsorption of methanol is probably the rds. This is supported by the apparent reaction orders and apparent activation energies of methanol oxidation.  相似文献   

12.
Ethylene oxidation was carried out on a commercial supported silver catalyst (Ag/α-Al2O3) in a spinning-basket catalytic reactor. The progress of the reacting system from initial start-up to final steady state, under certain operating conditions, revealed a complex oscillatory dynamic behaviour. The oscillatory pattern in carbon dioxide concentration in the reactor effluent vanished after a certain time (∼ 100 h) and the system attained steady state. Experiments were carried out to determine the range of reactant (ethylene and oxygen) concentrations wherein oscillations were possible. The dynamic behaviour is explained qualitatively in terms of the competition between reactants and products for adsorption and subsequent reaction on the catalyst surface, occurring simultaneously with slow thermal sintering.  相似文献   

13.
The kinetics of the oxidative dehydrogenation of butane on a V/MgO catalyst has been studied under anaerobic conditions. In these conditions the oxygen from the catalyst lattice is consumed by the reaction, and the oxidation degree of the catalyst changes during the experiment. A kinetic model is proposed in which each reaction rate is related with the oxidation degree of the catalyst. The whole kinetic model is useful for the modelling of reactors where the catalyst operates in non-steady state, i.e. where the oxidation degree of the catalyst changes with time. It has also been found that whereas the main contribution to the oxidative dehydrogenation reaction comes from the lattice oxygen, there is also a non-selective contribution from weakly adsorbed oxygen.  相似文献   

14.
A porous non‐platinum electrocatalyst for the oxygen reduction reaction (ORR), obtained by pyrolysing a cobalt porphyrin precursor, was evaluated by electrochemical means. The reactivity of the non‐platinum ORR catalyst was investigated with a rotating disc electrode (RDE) experimental set up. RDE data were collected in an acidic electrolyte containing N2, O2, CO and under mixed reactant O2/methanol conditions. The electrochemical performance of such‐obtained non‐platinum catalyst is discussed and compared to platinum‐based ORR catalysts. Based on the results collected here, we are able to propose and test possible proton exchange fuel cell (PEFC) operating conditions where non‐platinum ORR catalysts can be utilised. Direct methanol fuel cell (DMFC) data demonstrating a superior performance of the non‐platinum catalyst relative to platinum black, often perceived as the state‐of‐the‐art oxygen–reduction catalyst for the DMFC cathode is presented.  相似文献   

15.
16.
Methanol oxidation at technical carbon based electrodes in 0.05 M H2SO4 has been investigated by cyclic voltammetry using online MS under the conditions of an acid methanol fuel cell (DMFC). 5% Pt on Norit BRX and 30% Pt/Ru (40/60) on Norit BRX were used as catalysts. It is shown that methanol oxidation at technical electrodes can be characterized by a combination of cyclic voltammetry and mass spectroscopy. The onset potentials and potential dependences of the methanol oxidation rate can be determined directly by monitoring the formation of CO2. Onset potentials of 0.5V and 0.25 V/RHE have been measured for Pt and Pt-Ru catalysts, respectively. The onset of methanol oxidation can be shifted to even more cathodic potentials (0.2V) if the Pt-Ru electrode reduces oxygen simultaneously. Carbon monoxide gas was also purged into the methanol containing electroyte during measurement in order to investigate the catalyst performance under more adverse conditions. C13-labelled methanol was used to distinguish between CO2. formed from methanol (m/e = 45) and CO-oxidation (m/e = 44). Without CO the use of C13-labelled methanol enabled a distinction between methanol oxidation and carbon corrosion. The methanol oxidation at the platinum catalyst is severely inhibited by the presence of CO, shifting its onset to 0.65 V/RHE. In contrast the performance of the Pt-Ru electrode is not seriously affected under these conditions. It is concluded that Pt-Ru is an excellent catalyst for a methanol anode in an acid methanol fuel cell (DMFC).  相似文献   

17.
Feed composition cycling as a transient kinetic technique provides detailed information about elementary steps in CO oxidation over a nanostructured Cu0.1Ce0.9O2–y catalyst. This catalyst has a great potential as a future PROX reactor catalyst since it has great oxygen storage capacity as well as high reoxidation rate under oxygen rich conditions.  相似文献   

18.
We analyze the kinetics of rapid bistable reactions (e.g., CO or hydrogen oxidation on Pt) occurring on a nm catalyst particle located inside a mesoscopic pore. Limitations for reactant diffusion inside a single pore are shown to modify the dependence of the reaction rate on the reactant pressures outside the pore. In particular, the position of the maximum reaction rate is shifted to higher CO pressures (provided that the O2 pressure is fixed). This effect is significant if a pore is not too short. Similar effects are possible during oscillations in CO oxidation on supported nm catalyst particles.  相似文献   

19.
In situ Raman spectroscopy has been employed to investigate oxygen adsorption on electrolytic silver catalyst under industrial conditions for methanol oxidation to formaldehyde. Both adsorbed atomic and molecular oxygen species are shown to exist on the silver surface in O2 flow above 870 K. The peroxide species is determined to be a precursor to atomic adsorbed oxygen. In consideration of the industrial process, the molecular mechanism of the partial oxidation of methanol and the adsorption mechanism of oxygen on electrolytic silver surface are discussed.  相似文献   

20.
The performance of the active catalyst 5%V2O5-1.9%MgO/TiO2 in propane oxidative dehydrogenation is investigated under various reactant contact modes: co-feed and redox decoupling using fixed bed and co-feed using fluid bed. Using fixed bed reactor under co-feed conditions, propane is activated easily on the catalyst surface with selectivities ranging from 30 to 75% depending on the degree of conversion. Under varying oxygen partial pressures, especially for higher than the stoichiometric ratio O2/C3H8 = 1/2, nor the propane conversion or the selectivities to propene and COx are affected. The performance of the catalyst in the absence of gas phase oxygen was tested at 400 °C. It was confirmed that the catalyst surface oxygen participates to the activation of propane forming propene and oxidation products with similar selectivities as those obtained under co-feed conditions. The ability of the catalyst to fully restore its activity by oxygen treatment was checked in repetitive reduction–oxidation cycles. Fluid bed reactor using premixed propane–oxygen mixtures was also employed in the study. The catalyst was proved to be very active in the temperature range 300–450 °C attaining selectivities comparable to those of fixed bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号