首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于手势识别的机器人人机交互技术研究   总被引:7,自引:1,他引:7  
研究了基于视觉的动态手势识别技术,采用基于肤色的高斯模型与改进的光流场跟踪算法结合的方法,实现了复杂背景下实时的手势跟踪,具有快速和准确的特点,且具有较好的鲁棒性.对于动态手势识别器,采用了隐马尔可夫模型(HMM)作为训练识别算法.考虑到动态手势特征本身的一些特点,对HMM 参数优化算法重估式加以修正,调整了算法比例因子,从而推导了最佳状态链的确定算法、HMM 参数优化算法.最后将研究开发的动态手势识别算法成功地应用到了基于网络的远程机器人控制系统中.  相似文献   

2.
自适应技术是提高非特定人语音识别系统识别性能的有效手段,其中应用最广泛的两种自适应方法是基于最大后验概率的自适应方法和基于最大似然线性回归的自适应方法,分析了它们各自的特点并将最大后验概率的自适应方法应用到基于隐马尔可夫模型的口令识别系统中,实验结果表明,该方法能够在每个词自适应一次的情况下,使系统的识别率由40%提高到90%以上,并在此基础上实现了一个实用的中等词汇量的口令识别系统。  相似文献   

3.
针对声音效果变化引起的语音声学特性的改变,提出基于声学模型自适应的方法。分析了正常模式下训练的声学模型在识别其他声效模式下语音的表现;根据随机段模型的模型特性,将最大似然线性回归方法引入到随机段模型系统中,并利用自适应后的声学模型来识别对应的声效模式下的语音。在“863-test”测试集上进行的汉语连续语音识别实验显示,正常模式下训练的声学模型识别其他四种声效模式下的语音时,识别精度均有较大程度的下降;而自适应后的系统在识别对应的声效模式的语音时,识别精度有了明显的改观。表明了基于声学模型自适应的方法在解决语音识别中声音效果变化问题上的有效性。  相似文献   

4.
    
Exploring correct patterns from low‐frequency time‐series data is challenging. For resolving this problem, the concept of possibility theory–based hidden Markov model (PTBHMM) has been proposed. In this article, all three fundamental problems (evaluation, decoding, and learning) of conventional HMM have been addressed using possibility theory. For handling uncertainty, we have used an axiomatic approach of possibility theory proposed by Zadeh. The time complexity of existing solutions of HMM (forward, backward, Viterbi, and Baum Welch) and proposed possibility‐based solutions has been calculated and compared. From the comparison result, it has been found that PTBHMM has lesser time complexity and hence will be more suitable for real‐time gesture–based communication.  相似文献   

5.
随着信息技术、数据库技术、网络技术的发展,各行各业均存储了大量的文本数据,怎样从这些文本数据中发掘有价值的信息和知识成为人们急需解决的问题。提出基于Maximum Likelihood与HMM的文本挖掘方法,利用Maximum Likelihood构建隐马尔可夫模型,对论文条目进行特定信息的发掘,并克服了实验过程中“零概率”的缺陷。实验结果表明准确率平均达到0.9,召回率平均达到0.85,从理论和实践上证明该方法是有效的。  相似文献   

6.
邹腊梅  肖基毅  龚向坚 《微机发展》2007,17(12):110-112
随着信息技术、数据库技术、网络技术的发展,各行各业均存储了大量的文本数据,怎样从这些文本数据中发掘有价值的信息和知识成为人们急需解决的问题。提出基于Maximum Likelihood与HMM的文本挖掘方法,利用Maximum Likelihood构建隐马尔可夫模型,对论文条目进行特定信息的发掘,并克服了实验过程中"零概率"的缺陷。实验结果表明准确率平均达到0.9,召回率平均达到0.85,从理论和实践上证明该方法是有效的。  相似文献   

7.
提出了一种随机段模型系统的说话人自适应方法。根据随机段模型的模型特性,将最大似然线性回归方法引入到随机段模型系统中。在“863 test”测试集上进行的汉语连续语音识别实验显示,在不同的解码速度下,说话人自适应后汉字错误率均有明显的下降。实验结果表明,最大似然线性回归方法在随机段模型系统中同样能取得较好的效果。  相似文献   

8.
    
The role of gesture recognition is significant in areas like human‐computer interaction, sign language, virtual reality, machine vision, etc. Among various gestures of the human body, hand gestures play a major role to communicate nonverbally with the computer. As the hand gesture is a continuous pattern with respect to time, the hidden Markov model (HMM) is found to be the most suitable pattern recognition tool, which can be modeled using the hand gesture parameters. The HMM considers the speeded up robust feature features of hand gesture and uses them to train and test the system. Conventionally, the Viterbi algorithm has been used for training process in HMM by discovering the shortest decoded path in the state diagram. The recursiveness of the Viterbi algorithm leads to computational complexity during the execution process. In order to reduce the complexity, the state sequence analysis approach is proposed for training the hand gesture model, which provides a better recognition rate and accuracy than that of the Viterbi algorithm. The performance of the proposed approach is explored in the context of pattern recognition with the Cambridge hand gesture data set.  相似文献   

9.
隐马尔可夫模型(HMM)是非侵入式负荷监测常用的算法.由于电压波动与负荷自身电气特性变化等原因,负荷的测量状态如功率可能持续变化,运行过程中出现新的状态转移,但当前基于HMM的非侵入式负荷监测方法并未考虑如何处理该情况,缺乏状态辨识与功率分解的泛化能力.针对这一问题,本文提出并构建二元参数隐马尔科夫模型(BPHMM),结合DBSCAN聚类算法,基于有功功率和稳态电流对负荷状态进行聚类,降低了因电压波动和噪声数据对负荷状态聚类结果造成干扰的可能性;改进维特比算法使其考虑到HMM模型参数更新以实现对负荷状态预测泛化性能的改进;考虑到功率的随机波动性,基于极大似然估计原理构建功率计算优化模型并实现负荷的功率分解.本文采用公共数据集AMPds2对所述方法进行验证,测试算例验证了所述方法的有效性.  相似文献   

10.
针对个体手势动作信号的差异性和不稳定性,提出了一种基于加速度传感器的连续动态手势识别方法.通过MEMS加速度传感器采集手势动作信号,并结合手势信号的动作特征,对单个手势的有效数据进行自动定位截取,经预处理和特征提取后,构建隐马尔可夫模型(HMM)以实现对特定手势的实时识别.通过设计实现了一种可穿戴手势信号采集硬件原型系统,对10类手势的1000个手势数据进行识别对比实验,统计结果表明:该方法可以对连续手势进行实时有效的识别.  相似文献   

11.
本文提出了一种基于最大熵马尔科夫模型的绩效评价方法.该方法采用马氏模型来定量化建模专家打分过程,采用特征函数表征打分规则,通过在训练集上最大化熵来获得符合专家经验的最优的打分模型.与传统方法相比,所提出的方法可以融合各种打分规则、专家经验和指标逻辑关系得到综合打分结果.为了提高模型的训练和打分的效率,本文提出了基于改进迭代算法的参数估计方法,并利用Viterbi算法进行快速打分计算.利用中国大洋协会绩效评价指标体系历史数据进行的仿真实验表明,与BP神经网络方法和最大熵方法进行对比,本文所提出的方法具有更高的打分正确率.  相似文献   

12.
In this paper, we propose a new method for recognizing hand gestures in a continuous video stream using a dynamic Bayesian network or DBN model. The proposed method of DBN-based inference is preceded by steps of skin extraction and modelling, and motion tracking. Then we develop a gesture model for one- or two-hand gestures. They are used to define a cyclic gesture network for modeling continuous gesture stream. We have also developed a DP-based real-time decoding algorithm for continuous gesture recognition. In our experiments with 10 isolated gestures, we obtained a recognition rate upwards of 99.59% with cross validation. In the case of recognizing continuous stream of gestures, it recorded 84% with the precision of 80.77% for the spotted gestures. The proposed DBN-based hand gesture model and the design of a gesture network model are believed to have a strong potential for successful applications to other related problems such as sign language recognition although it is a bit more complicated requiring analysis of hand shapes.  相似文献   

13.
钟山  何亮  邓妍  刘加 《自动化学报》2009,35(5):546-550
研究了将自适应领域的最大似然线性回归(Maximum likelihood linear regression, MLLR)变换矩阵作为特征进行文本无关的说话人识别算法. 本文引入了基于统一背景模型的MLLRSV-SVM说话人识别算法, 并在此基础上进行高层音素聚类以进一步提高识别性能. 在采用多种信道补偿技术后, 在NIST SRE 2006年1训练语段-1测试语段同信道和跨信道数据库上, 基于MLLR特征的系统与其他最好的系统性能接近并有很强的互补性, 经过简单线性融合可以极大提高识别性能.  相似文献   

14.
跳变约束下马尔可夫切换非线性系统滤波   总被引:1,自引:0,他引:1       下载免费PDF全文
针对系统状态演化多模不确定性和状态约束多样性,本文提出了跳变约束下马尔可夫切换非线性系统的交互式多假设估计方法.定义了包含跳变马尔可夫参数可能取值的假设集,根据最优贝叶斯滤波,推导出状态与假设的后验概率递推更新.基于统计线性回归线性化非线性函数,利用伪量测法,将线性化的约束扩维到真实量测中,给出了非线性系统滤波的近似解析最优解.最终给出所提算法的稀疏网格积分近似最优估计实现.在交叉道路机动目标跟踪仿真场景中,所提算法的滤波精度优于基于泰勒展开的交互式多模型算法,基于统计线性回归的交互式多模型算法,以及基于泰勒展开的非线性系统约束滤波算法.  相似文献   

15.
This paper presents a fuzzy control mechanism for conventional maximum likelihood linear regression (MLLR) speaker adaptation, called FLC-MLLR, by which the effect of MLLR adaptation is regulated according to the availability of adaptation data in such a way that the advantage of MLLR adaptation could be fully exploited when the training data are sufficient, or the consequence of poor MLLR adaptation would be restrained otherwise. The robustness of MLLR adaptation against data scarcity is thus ensured. The proposed mechanism is conceptually simple and computationally inexpensive and effective; the experiments in recognition rate show that FLC-MLLR outperforms standard MLLR especially when encountering data insufficiency and performs better than MAPLR at much less computing cost.  相似文献   

16.
17.
传统Web信息抽取的隐马尔可夫模型对初值十分敏感和在实际训练中极易得到局部最优模型参数。提出了一种使用遗传算法优化HMM模型参数的Web信息抽取混合算法。该算法使用实数矩阵编码表示染色体,似然概率值为适应度取值,将GA与Baum-Welch算法相结合对HMM模型参数进行全局优化,并且调整GA-HMM的Baum-Welch算法参数实现Web信息抽取。实验结果表明,新的算法在精确度和召回率指标上比传统HMM具有更好的性能。  相似文献   

18.
噪声功率谱估计是语音增强算法的基本组成部分,传统算法大多采用启发式的估计方法,因而不能保证噪声估计值的统计最优。提出了一种基于极大似然的非监督噪声功率谱估计方法,采用隐马尔可夫模型(Hidden Markov model, HMM)在每个子带建立语音和非语音对数功率谱的统计模型,模型包含语音和非语音两个高斯分量,其中非语音高斯分量的均值表示噪声功率谱估计值,根据最大期望(Expectation maximization, EM)算法得到包括噪声均值在内的HMM参数集。针对语音信号可能出现的长时缺失,对HMM引入了一些约束条件,保证了模型的稳定性。实验表明,该方法获得的极大似然噪声估计优于基于启发式的经典方法获得的噪声估计。  相似文献   

19.
基于连续隐马尔可夫模型的人脸识别方法   总被引:1,自引:0,他引:1  
提出了一种基于连续隐马尔可夫模型的人脸图像识别方法,主要内容包括以下方面:①由于奇异值向量具有稳定性.转置不变性等特点,对归一化的人脸图像,采用奇异值分解抽取人脸图像特征作为观察值序列;②在人脸识别中应用连续隐马尔可夫模型,采用双高斯概率密度函数训练,建立HMM模型,再利用建好的HMM模型进行识别.实验结果显示,所提出的方法减少了数据计算量,运行速度快,并提高了识别率,完全满足人脸识别系统实时性要求.  相似文献   

20.
本文在对语音识别中基于自适应回归树的极大似然线性变换(MLLR)模型自适应算法深刻分析的基础上,提出了一种基于目标驱动的多层MLLR自适应(TMLLR)算法。这种算法基于目标驱动的原则,引入反馈机制,根据目标函数似然概率的增加来动态决定MLLR变换的变换类,大大提高了系统的识别率。并且由于这种算法的特殊多层结构,减少了许多中间的冗余计算,算法在具有较高的自适应精度的同时还具有较快的自适应速度。在有监督自适应实验中,经过此算法自适应后的系统识别率比基于自适应回归树的MLLR算法自适应后系统的误识率降低了10% ,自适应速度也比基于自适应回归树的MLLR算法快近一倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号