首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of potassium succinate-g-polypropylene (KPPSA) as compatibilizer for the dispersion of clay in a high molecular weight polypropylene during melt mixing for the preparation of nanocomposites was evaluated and compared with maleic anhydride-g-polypropylene (PPMA). Nanocomposites were prepared by direct melt mixing and by masterbatch methods and the structure obtained was characterized by WAXD and TEM. The exfoliation and better dispersion of the organoclay was observed with KPPSA than PPMA. The dispersion of clay was found to be dependent on the method of preparation, type and the amount of compatibilizer used. The dispersion was better when the nanocomposites were prepared by two step masterbatch route than the single step direct mixing method. Flexural moduli and crystallization behavior were studied and correlated with the dispersion of organoclay in the PP matrix.  相似文献   

2.
Polypropylene (PP)/clay nanocomposites were prepared via a melt mixing technique. Two types of compatibilizers, polyolefin elastomer grafted maleic anhydride (POE-g-MA), and polypropylene grafted maleic anhydride (PP-g-MA) were incorporated to improve the dispersion of commercial organoclay (20A). With the introduction of PP-g-MA, the optical transmittance of the nanocomposites displayed higher transmittance than those of the POE-g-MA compatibilized case. However, POE-g-MA greatly increased the interlayer spacing of the clay compared with PP-g-MA. This interesting observation is pertinent to the complex morphology of compatibilized nanocomposites. The PP-g-MA compatibilized system conferred higher tensile strength, Young’s modulus, and cutting strength than the POE-g-MA compatibilized case. The high cutting strength of the PP/clay nanocomposites, with or without compatibilizers, signified the importance of crystalline yielding even in the nano-fracture zone of deformation. This finding has not been published in the literature of this field. Clay and its dispersion effect that conventionally claimed to enhance the tensile properties were rather insignificant under this condition of confined deformation of the cutting design. The current results suggest that a high extent of exfoliation may not guarantee high transparency or strength for nanocomposites. The matrix properties and interphase whose variations were caused by the additional compatibilizers to aid the clay dispersion were also crucial factors to the derived properties.  相似文献   

3.
The key compatibiliser role of maleated polypropylene (MAPP) to improve the clay dispersability has been explicitly addressed in the fabrication process and material characterisation of polypropylene (PP)/clay nanocomposites. However, its matrix plasticiser role, which has been rarely mentioned, could adversely influence the excellent mechanical properties of such nanocomposites, resulting from the homogeneous clay dispersion. PP/clay nanocomposites in the presence of MAPP were prepared by twin screw extrusion and subsequently injection moulded with three typical material formulations in fixed parametric settings: (1) weight ratio (WR) of clay and MAPP, WR = 1:2; (2) MAPP content of 6 wt% and (3) clay content of 5 wt%. The morphological structures and mechanical properties of PP/clay nanocomposites were examined by using X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and universal mechanical testing. The further improvement of mechanical properties was evidently hindered with very inconsiderable alteration of morphological structures in terms of the clay dispersion level. This observation could be ascribed to the change of MAPP role from a compatibiliser to a plasticiser because of its excessive amount used above a certain saturation level, which was found in the range of 3–6 wt% in MAPP contents for the enhancements of tensile and flexural properties of PP/clay nanocomposites.  相似文献   

4.
A series of polypropylene (PP)/organoclay nanocomposites with varied concentrations of clay, from 1 to 7 wt%, was successfully prepared via melt intercalation using a PP functionalized with maleic anhydride as compatibilizer. The morphology/property relationships of the nanocomposites were investigated by XRD, TGA and DSC analyses. Two distinct groups of composites, from a quasi-exfoliated to an intercalated/flocculated morphology, were identified. In particular, intercalated/flocculated morphologies were obtained for those composites with an organoclay concentration beyond the threshold (3 wt%), as evidenced by XRD analysis and confirmed by the increase of the glass transition temperature. This last effect was related to the confinement of polymer chains between the silicate layers, generating a reduction of the chain mobility. The variable increase of the thermal stability of the nanocomposites was also likely related to the different degree of exfoliation/intercalation of the samples. The toluene extraction of composites was used as a powerful methodology to distinguish between polymer phases differently interacting with the inorganic surface: composites having a semi-exfoliated structure were split into two fractions having a similar morphology. For those samples having the higher organoclay concentration and intercalated morphology, a toluene-residue fraction was obtained containing almost all the clay present in the pristine composite. Furthermore, in this case the morphological analysis of the residue fraction evidenced a collapse of the inorganic structure compared to that of the unextracted composite. A careful characterization of both soluble and residue fractions is reported and the results are discussed considering the interactions at the interface between the functionalized PP chains and silicate layers and their effects on the organoclay dispersion degree and stability.  相似文献   

5.
In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.  相似文献   

6.
In view of the structure–property relationship, the mechanical property enhancement of polypropylene (PP)/clay nanocomposites can also be associated with the alterations of their crystalline structures and behaviour in addition to the general interpretation of intercalation/exfoliation level and uniform dispersion of more rigid clay platelets with higher aspect ratios in the PP matrix. Wide-angle X-ray diffraction (WAXD) was utilised to evaluate the effects of clay content, maleated PP (MAPP) content (MAPP as the compatibiliser) on PP crystalline structures of nanocomposites. Furthermore, the melting and crystallisation behaviour of PP/clay nanocomposites was also investigated by conducting differential scanning calorimetry (DSC). The thermo-mechanical properties were characterised via dynamic mechanical thermal analysis (DMTA). It is observed that enhancement of mechanical properties are mainly affected by the preferred orientation of PP crystals, the growth of α-PP phase and effective nucleating agent role of additional clay while the excessive amount of MAPP becomes detrimental to these crucial aspects, which is also evidently revealed in DMTA measurements.  相似文献   

7.
《Composites Part A》2007,38(6):1473-1482
The effect of processing temperature on the interfacial adhesion, mechanical properties and thermal stability of bio-flour-filled, polypropylene (PP) composites was examined as a function of five different maleic anhydride-grafted PP (MAPP) types. To investigate the effect on the interfacial adhesion of the composites, the five MAPP types were subjected to characterization tests. The MAPP-treated composites with sufficient molecular weight and maleic anhydride (MA) graft (%) showed improved mechanical and thermal stability. The enhanced interfacial adhesion, and mechanical and thermal stability of the MAPP-treated composites was strongly dependent on the amount of MA graft (%) and the MAPP molecular weight. The morphological properties of the MAPP-treated composites showed strong bonding and a paucity of pulled-out traces from the matrix in the two phases. In addition, the improved interfacial adhesion of the MAPP-treated composites was confirmed by spectral analysis of the chemical structure using attenuated total reflectance (FTIR-ATR). The crystallinity of PP, MAPP, MAPP-treated composites and non-treated composites was investigated using wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC).  相似文献   

8.
The effect of organoclay on the mechanical and thermal properties of woven carbon fiber (CF)/compatibilized polypropylene (PPc) composites is investigated. Polypropylene–organoclay hybrids nanocomposites were prepared using a maleic anhydride-modified PP oligomer (PP-g-MA) as a compatibilizer. Different weight percentages of Nanomer® I-30E nanoclay were dispersed in PP/PP-g-MA (PPc) using a melt mixing method. The PPc/organoclay nanocomposite was then used to manufacture plain woven CF/PPc nanocomposites using molding compression process. CF/PPc/organoclay composites were characterized by different techniques, namely; dynamic mechanical analysis (DMA), fracture toughness and scanning electron microscope. The results revealed that at filler content 3% of organoclay, initiation and propagation interlaminar fracture toughness in mode I were improved significantly by 64% and 67% respectively, which could be explained by SEM at given weight as well; SEM images showed that in front of the tip, fibers pull out during initiation delamination accounting for fracture toughness improvement. Dynamic mechanical analysis showed enhancement in thermomechanical properties. With addition 3 wt.% of organoclay, the glass transition temperature increased by about 6 °C compared to neat CF/PPc composite indicating better heat resistance with addition of organoclay.  相似文献   

9.
制备了功能化聚异丁烯-蒙脱土复合物改性的聚丙烯复合材料。考察了活化剂、加工温度等因素对改性聚丙烯性能的影响。通过扫描电镜观察了蒙脱土在改性聚丙烯中的分散效果。实验结果表明,功能化聚异丁烯-蒙脱土复合物可以较好地分散在聚丙烯中,当其用量为4wt%、活化剂用量为蒙脱土的1wt%时,制备的聚异丁烯-蒙脱土/聚丙烯复合材料的模量为2280 MPa、冲击强度为63J/m,回缩率为0.5%,各项指标均好于未改性的聚丙烯树脂。分散在聚丙烯中的蒙脱土尺寸约为1μm。  相似文献   

10.
采用熔融共混法制备了nano-ZnO/聚丙烯(PP)复合材料,研究了相容剂聚丙烯接枝马来酸酐(PP-gMAH)的加入对nano-ZnO/PP复合材料的成核结晶行为、晶体结构、结晶形态以及力学性能的影响。结果表明,低添加量(质量分数小于5%)的nano-ZnO对PP有较好的β晶成核效应,而当其质量分数大于5%时,nano-ZnO对PP结晶有明显的异相成核作用,使PP结晶温度大幅度提高,PP结晶在(040)晶面呈现生长择优性;PP-gMAH的加入增强了nano-ZnO粒子与PP基体之间的界面相互作用,改善了纳米粒子的分散性,促进了PP基体的异相成核,提高了nano-ZnO/PP复合材料的拉伸强度和冲击强度,但却抑制了nano-ZnO诱导PP生成β晶。nano-ZnO/PP复合材料体系中因界面相互作用改善所致的韧性提高明显强于nano-ZnO诱导PP形成β晶的增韧效应。  相似文献   

11.
Polypropylene/montmorillonite nanocomposites were prepared by melt compounding using organosilane modified polypropylene (PP-g-VTES) as compatibilizing agent. The materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), tensile modulus, and Izod impact strength. Addition of PP-g-VTES improved clay dispersion, as shown by the distribution of platelets per particle, and improve the interaction between clay and polymer matrix. Crystallization peak temperature (Tp) was increased in 10 °C using PP-g-VTES as compatibilizing agent. However the crystallization process and its rate were unmodified. The tensile modulus of compatibilized nanocomposite is 1.5 times higher compared to pure PP.  相似文献   

12.
Poly (styrene-acrylonitrile) (SAN)/clay nanocomposites have been prepared by melt intercalation method from pristine montmorillonite (MMT), using hexadecyl trimethyl ammonium bromide (C16) and hexadecyl triphenyl phosphonium bromide (P16) as the reactive compatibilizers between polymer and clay. The influence of the reactive compatibilizers proportion relative to the clay on the structure and properties of the SAN/clay nanocomposites is investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), high-resolution electron microscopy (HREM), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The effects of the two different clays (MMT and organic modified MMT) on the nanocomposites formation, morphology and property are also studied. The results indicate that the SAN cannot intercalate into the interlayers of the MMT and results in microcomposites. In the presence of the reactive compatibilizers, the dispersion of clay in SAN is rather facile and the SAN/clay nanocomposites reveal an intermediate morphology, an intercalated structure with some exfoliation and the presence of small tactoids. The appropriate proportion with 3 wt% reactive compatibilizers to 5 wt% MMT induces well-dispersed morphology and properties in the SAN matrix. The TGA analyses show that the thermal stability properties of the SAN/clay nanocomposites have been improved compared with those of the pristine SAN. The DMA results show that the storage modulus and glass transition temperature (Tg) of the SAN/clay nanocomposites have remarkably enhancements compared with the pristine SAN. At last the intercalation mechanism of the technology is discussed.  相似文献   

13.
《Composites Part B》2004,35(2):133-138
Polypropylene (PP)/clay nanocomposites (PPCN) were prepared using a swollen organoclay, which had a larger interlayer spacing than pristine organoclay. The organoclay was first treated with a swelling agent (maleic anhydride, MA) and a co-swelling agent in solution. Then, it was melt blended with PP-g-MA to generate a pre-intercalated composite (PIC). Finally, the PIC was blended with PP to obtain a PPCN, which contained small amounts of PP-g-MA. The materials were characterized using X-ray diffraction (XRD), Scanning electron microscopy, Transmission electron microscopy (TEM), and TGA. The XRD graphs showed that the basal spacing of the pristine clay treated with MA was 1.6 nm, which was larger than that of the original clay, but smaller than that of the organoclay. The XRD graphs of the organoclay treated with MA showed double peaks at 3 and 5.5°. As the ratio of MA to the organoclay increased, the peak at 5.5° decreased gradually. TEM micrographs indicated that the clay layers in the pre-intercalated blends were still stacked in an orderly manner. However, partial exfoliation of the clay layers was observed in the PPCN. The nanocomposites prepared with the aid of swelling agents contained some PP-g-MA. Good dispersion of the clay layers gave the PPCN greater thermal stability and an enhanced storage modulus, which indicated a reinforcing effect of the clay in the PP matrix. The increased Tg (derived from Dynamic mechanical analysis) of PPCN implied that the PP macromolecules were intercalated between interlayers of the silicate.  相似文献   

14.
In this work, the rheological, mechanical and morphological properties of nylon 6/polypropylene compatibilized blends were investigated. Two types of polypropylene were used. One with MFI of 40 g/10 min (PP H103) and the other with MFI of 3.5 g/10 min (PP H503). The compatibilizers used were polypropylene grafted with 6% of acrylic acid (PPgAA) and polypropylene grafted with 1% of maleic anhydride (PPgMA). The blends composition was 80/20 (wt%) for the PA6/PP binary blends and 80/10/10(wt%) for the nylon 6/PPgAA/polypropylene and nylon 6/PPgMA/polypropylene ternary blends. Torque rheometry analysis showed that when PPgAA and PPgMA were added to nylon 6/polypropylene blends, there was an increase in the torque, indicating that reactive compatibilization has occurred. There is no influence of the polypropylene MFI on the mechanical properties of the uncompatibilized and compatibilized blends. The impact strength of the blends containing PPgMA were greater than those of the blends containing PPgAA. The blends containing PPgAA are unstable. SEM analysis showed that PPgMA improves considerably the adhesion between PA6/PP phases, leading to good mechanical properties.  相似文献   

15.
Isotactic polypropylene (PP)/nano-magnesium hydroxide (nano-MH) composites with 10 wt.% maleic anhydride grafted styrene–ethylene-butylene–styrene tri-block copolymer (SEBS-g-MA) as a compatilizer were prepared by melt extrusion compounding and injection molding. The effects of SEBS-g-MA on dispersion of nano-MHs in PP matrix and interfacial adhesion were studied in order to prepare highly filled PP/MH nanocomposites. The results showed that SEBS-g-MA improved both dispersion of nano-MHs and interfacial adhesion in PP/MH nanocomposites with up to 40 wt.% nano-MHs. The elastic moduli of PP/SEBS-g-MA /MH nanocomposites increased marginally and tensile yield strengths were almost invariant with nano-MH loading. Significant impact toughening of these ternary nanocomposites was, however, achieved due to the cavitation of SEBS-g-MA/MH particles and expansion of voids as well as plastic deformation of the PP matrix.  相似文献   

16.
Nanocomposites of polypropylene-graft-maleic anhydride/clay were prepared by melt blending in an extruder mixer. The nanoscale dispersion of the clay in the polymer was analysed by wide-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results of XRD and TEM showed that the nanocomposites obtained were a kind of intercalated-delaminated structures side by side with different dominant states, depending on the clay used and on the processing conditions. The consequences of photo-oxidation on the thermal stability and fire retardant properties of the nanocomposites were investigated using thermogravimetric analysis and cone calorimetry tests. It appeared that this degradation dramatically affected the important properties of the nanocomposites. A loss of thermal stability and fire retardant performance was observed. This was ascribed to scission reactions that occurred during the oxidative degradation prior to thermal and fire tests.  相似文献   

17.
Liu M  Guo B  Zou Q  Du M  Jia D 《Nanotechnology》2008,19(20):205709
Many types of clay tend to absorb organics via electron transferring interactions between the clay and the organics. This may be utilized to design clay incorporated polymer composites with better interfacial properties. In the present paper, 2,5-bis(2-benzoxazolyl) thiophene (BBT), capable of donating electrons, is selected as the interfacial modifier for polypropylene (PP)/halloysite nanotube (HNTs) composites. The electron transfer between HNTs and BBT are confirmed. The mechanical properties and the unique morphology of the nanocomposites are examined. Formation of fibrils of BBT in the presence of HNTs is found in the nanocomposites. The chemical composition of the fibrils in the nanocomposites is found to be composed of largely BBT and a small amount of HNTs. The formation mechanism of BBT fibrils are elucidated to be the strong interactions between BBT and HNTs under melt shearing. The formation of the BBT fibrils leads to much higher crystallinity compared with previously reported PP nanocomposites. The nanocomposites with BBT show substantially increased tensile and flexural properties, which are attributed to the enhanced crystallinity of the nanocomposites.  相似文献   

18.
This study reports the application of illite as a clay filler and direct fluorination as an organophilic modification for clays. Illite was also modified using conventional methods, with reagents such as 3-aminopropyltrimethoxysilane and hexadecyl-trimethoxysilane for comparison of the resultant illite/polypropylene (PP) composites with the fluorinated illite/PP composites. The thermal properties, flame retardancy, and mechanical properties of the resultant composites were also investigated. Fluorination of illite resulted in exfoliation and more thermally stable organophilic modification compared with the conventional silane treatment. When comparing two different silane-treated illite/PP composites with fluorinated illite/PP composites, fluorinated illite had better thermal stability and exfoliation after modification and more improved dispersion in PP matrix. This resulted in improved thermal stability, flame retardancy, and mechanical properties compared with the silane-treated illite/PP composites. The fluorinated illite/PP composite exhibited a 28% increase in thermal stability and a 50% increase in flame retardancy compared with neat PP. Fluorination of illite yielded at least 50% further improvement in the thermal stability and flame retardancy of the resulting illite/PP composites compared with the conventional silane treatments.  相似文献   

19.
Nanocomposites of montmorillonite organoclays and polypropylene (PP) were prepared via direct melt intercalation using maleic anhydride functionalized polypropylene (PP-g-MA) as a compatibilizer. Two montmorillonite clays (MMT) with different cation exchange capacities (CEC) were exchanged with alkyl ammonium ions, in which one or two octadecyl chains are attached to the nitrogen atom. The role of alkyl chain numbers and CEC value on the dispersion of clay and rheology of PP nanocomposites under shear and extensional flow was evaluated by X-ray diffraction, scanning electron microscopy, and rheologic techniques. It was found that the low-CEC organoclay with one alkyl chain could only form a conventional composite. However, the low-CEC organoclay with two alkyl chains or high-CEC organoclay with one alkyl chain can disperse finely in the matrix. Nanocomposites containing these two organoclays showed typical shear rheologic properties of intercalated nanocomposites, but only the former showed a mild strain-hardening behavior in uniaxial extensional flow. When using an intercalant with two tails, the high-CEC clay would lead the organoclay to form mixed structures which further resulted in an inferior dispersion quality. It was proposed that the dispersion quality and rheologic properties of nanocomposites were related to the arrangement of modifier molecules in the clay galleries, which was determined by the CEC of clay and the structure of alkyl ammonium ions.  相似文献   

20.
The objective of this study was to investigate the effects of two compatibilizers, namely maleated polypropylene (PP-g-MA) and maleic anhydride grafted poly (ethylene-co-octene) (EOC-g-MA), on the morphology and thus properties of ternary nanocomposites of polypropylene (PP)/ethylene–octene copolymer (EOC)/clay nanocomposite. In this regard the nanocomposites and their neat polymer blend counterparts were processed twice using a twin screw extruder. X-ray diffraction, transmission electron microscopy, Energy dispersive X-ray spectroscopy, and scanning electron microscopy were utilized to characterize nanostructure and microstructure besides mechanical and rheological behaviors of the nanocomposites. Clay with intercalated structure was observed in EOC phase of the PP/EOC/clay nanocomposite. Better dispersion state of the intercalated clay in EOC phase was observed by adding EOC-g-MA as a compatibilizer. On the other hand, adding PP-g-MA resulted in migration of the intercalated clay from the EOC to the PP and to the interface regions. It was also demonstrated that the elastomer particles became smaller in size where clay was present. The finest and the most uniform morphology was found in the PP/EOC/clay nanocomposite. In addition, the rheological results illustrated a higher complex viscosity and storage modulus for PP/EOC/PP-g-MA/clay nanocomposite in which clay particles were present in the matrix. Mechanical assessments showed improvements in the toughness of the nanocomposites with respect to their neat blends, without significant change in stiffness and tensile strength values. These results highlight a toughening role of clay in the polymer blend nanocomposites studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号