首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A. Evdou  L. Nalbandian 《Fuel》2010,89(6):1265-1273
This work reports on the preparation and characterization of perovskitic materials with the general formula La1−xSrxFeO3 (x = 0, 0.3, 0.7, 1) for application in a dense mixed conducting membrane reactor process for simultaneous production of synthesis gas and pure hydrogen. Thermogravimetric experiments indicated that the materials are able to loose and uptake reversibly oxygen from their lattice up to 0.2 oxygen atoms per “mole” for SrFeO3 with x = 1 at 1000 °C. The capability of the prepared powders to convert CH4 during the reduction step, in order to produce synthesis gas, as well as their capability to dissociate water during the oxidation step, in order to produce hydrogen were evaluated by pulse reaction experiments in a fixed bed pulse reactor. The high sintering temperatures (1100-1300 °C) required for the densification of the membrane materials result in decreased methane conversion and H2 yields during the reduction step compared to the corresponding values obtained with the perovskite powders calcined at 1000 °C. Addition of small quantities of NiO, by simple mechanical mixing, to the perovskites after their sintering at high temperatures, increases substantially both their methane decomposition reactivity, their selectivity towards CO and H2 and their water splitting activity. Maximum H2 yield during the reduction step is achieved with the La0.7Sr0.3FeO3 sample mixed with 5% NiO and is 80% of the theoretically expected H2, based on complete methane decomposition. In the oxidation - water splitting step, 912 μmol H2 per gr solid are produced with the La0.3Sr0.7FeO3 sample mixed with 5% NiO. The experimental results of this work can be equally well applied for the “chemical-looping reforming” process since they concern using the lattice oxygen of the perovskite oxides for methane partial oxidation to syngas, in the absence of molecular oxygen, and subsequent oxidation of the solid.  相似文献   

2.
A new autothermal route to produce hydrogen from natural gas via chemical looping technology was investigated. Tests were conducted in a micro-fixed bed reactor loaded with 200 mg of NiO/NiAl2O4 as oxygen carrier. Methane reacts with a nickel oxide in the absence of molecular oxygen at 800 °C for a period of time as high as 10 min. The NiO is subsequently contacted with a synthetic air stream (21% O2 in argon) to reconstitute the surface and combust carbon deposited on the surface. Methane conversion nears completion but to minimize combustion of the hydrogen produced, the oxidation state of the carrier was maintained below 30% (where 100% represents a fully oxidized surface). Co-feeding water together with methane resulted in stable hydrogen production. Although the carbon deposition increased with time during the reduction cycle, the production rate of hydrogen remained virtually constant. A new concept is also presented where hydrogen is obtained from methane with inherent CO2 capture in an energy neutral 3-reactors CFB process. This process combines a methane combustion step where oxygen is provided via an oxygen carrier, a steam methane reforming step catalyzed by the reduced oxygen carrier and an oxidizing step where the O-carrier is reconstituted to its original state.  相似文献   

3.
We investigated a novel oxidation reaction with surface-oxygen and lattice-oxygen induced using a non-equilibrium electric discharge at ambient temperature. We employed MgO, ZrO2, and TiO2 for this novel reaction. Methane was oxidized easily and converted into H2, CO, and CO2 by the surface-oxygen and lattice-oxygen of oxide with activation of discharge at ambient temperature without gas-phase oxygen. The oxide itself was stable after the reaction. Among these oxides, the tetragonal phase and amorphous phase of ZrO2 showed remarkably high activity for methane oxidation. Consequently, up to 8% of surface and lattice oxygen of the oxide was consumed by methane oxidation induced by electric discharge. The non-equilibrium electric discharge activated both the surface-oxygen and the lattice-oxygen of the oxides and methane molecules in the gas phase. After these reactions, the oxide surface vacant sites were recovered partially through steam post-treatment. Hydrogen formed simultaneously with steam decomposition. Other reactions were also studied by changing the reaction gas: methane into carbon monoxide, carbon monoxide with oxygen, and carbon monoxide with steam. Furthermore, the correlation of reactivity between the feed gas and surface oxygen was studied. Emission spectra under a CH4 atmosphere with electric discharge showed complex peaks caused by carbon monoxide formation at 280-500 nm at 0-4 min, suggesting that surface oxygen on oxides was probably consumed within 4 min from the start of the reaction.  相似文献   

4.
A series of Sn-Cr binary oxide catalysts were prepared by a co-current co-precipitation method and tested for methane total oxidation. The binary oxide catalysts have much higher surface areas and catalytic activities for methane oxidation than pure SnO2. CrO x /SnO2 with a Cr/Sn atomic ratio of 3:7 displays the highest activity. Selected samples were subjected to temperature-programmed 18O isotope-exchange measurements. Both complete and partial heteromolecular 18O isotope exchange, as well as oxygen release, was observed for all catalysts. Reaction between CH4 and 18O2 under static conditions was performed to investigate the reaction mechanism and it was found that the total oxidation of methane over Sn-Cr binary oxide catalysts occurs via a redox cycle with the chromium ion in a high oxidation state as the active center. Oxygen mobility of the catalyst plays an important role in the total oxidation of methane, but too high a mobility leads to very high oxygen release and a reduction of the surface reoxidability. This causes a decrease in the catalytic oxidation activity.  相似文献   

5.
The partial oxidation of methane to formaldehyde over Pd-supported on Al2O3 in the presence of small amounts of halogen modifiers was investigated in an isothermal integral flow reactor at atmospheric pressure between 300 and 510°C. The effects of several variables, feed ratio of air to methane, reaction temperature, reciprocal of space velocity, and the type and amount of halogen modifiers on the conversion and product distribution, were determined by gas chromatography. Though 13 different mechanisms were postulated the rate of reaction was most satisfactorily correlated by a mechanism which assumes the rate controlling step to be the surface reaction between charged, adsorbed methane and oxygen.  相似文献   

6.
Detailed axial temperature distribution has been studied in a two-stage process for catalytic partial oxidation of methane to syngas, which consists of two consecutive fixed bed reactors with oxygen or air separately introduced. The first stage of the reactor, packed with a combustion catalyst, is used for catalytic combustion of methane at low initial temperature. While the second stage, filled with a partial oxidation catalyst, is used for the partial oxidation of methane to syngas. A pilot-scale reactor packed with up to 80 g combustion catalyst and 80 g partial oxidation catalyst was employed. The effects of oxygen distribution in the two sections, and gas hourly space velocity (GHSV) on the catalyst bed temperature profile, as well as conversion of methane and selectivities to syngas were investigated under atmospheric pressure. It is found that both oxygen splitting ratio and GHSV have significant influence on the temperature profile in the reactor, which can be explained by the synergetic effects of the fast exothermic oxidation reactions and the slow endothermic (steam and CO2) reforming reactions. Almost no change in activity and selectivity was observed after a stability experiment for 300 h.  相似文献   

7.
The partial oxidation of methane to synthesis gas has been investigated by admitting pulses of pure methane, pure oxygen and mixtures of methane and oxygen to platinum sponge at temperatures ranging from 973 to 1073 K. On reduced platinum the decomposition of methane results in the formation of surface carbon and hydrogen. No deposition of carbon occurs during the interaction of methane with a partly oxidised catalyst. Oxygen is present in three different forms under the conditions studied: platinum oxide, dissolved oxygen and chemisorbed oxygen species. Carbon monoxide and hydrogen are produced directly from methane via oxygen present as platinum oxide. Activation of methane involving dissolved oxygen provides a parallel route to carbon dioxide and water. Both platinum oxide and chemisorbed oxygen species are involved in the oxidation of carbon monoxide and hydrogen. In the presence of both methane and dioxygen at a stoichiometric feed ratio the dominant pathways are the direct formation of CO and H2 followed by their consecutive oxidation. A Mars-van Krevelen redox cycle is postulated for the partial oxidation of methane: the oxidation of methane is accompanied by the reduction of platinum oxide, which is reoxidised by incorporation of dioxygen into the catalyst.  相似文献   

8.
Perovskite-type oxygen-permeable membrane reactors of BaCo0.7Fe0.2Nb0.1O3−δ packed with Ni-based catalyst had high oxygen permeability and could be used for syngas production by partial oxidation of methane in coke oven gas (COG). The BCFNO membrane itself had a poor catalytic activity to partial oxidation of CH4 in COG. After the catalyst was packed on the membrane surface, 92% of methane conversion, 90% of H2 selectivity, 104% of CO selectivity and as high as 15 ml/cm2/min of oxygen permeation flux were obtained at 1148 K. During continuously operating for 550 h at 1148 K, no degradation of performance of the BCFNO membrane reactor was observed under the condition of hydrogen-rich COG. The possible reaction pathways were proposed to be an oxidation-reforming process. The oxidation of H2 in COG with the surface oxygen on the permeation side improves the oxygen flux through the membrane, and H2O reacts with CH4 by reforming reactions to form H2 and CO.  相似文献   

9.
The commercial potential for a given catalytic process may be influenced by requirements on metal loading, in particular where noble metals are used. In an effort to substantially decrease the amount of catalyst material used for methane activation and catalytic partial oxidation (CPO), the effect of 0.005 wt% noble metal (Rh, Ru, Pd or Pt) on 0.5 wt% Ni/γ-Al2O 3 catalysts have been studied at temperatures below 1,173 K and 1 atm. The successful catalysts were activated directly by in situ reduction, without a calcination step, to promote formation of a highly dispersed (supported) metal phase from nitrate precursors. The obtained metal particles were not observable by XRD (size <  2–3 nm). This activation procedure had a decisive effect on catalyst activity, as compared to a catalyst which was calcined ex situ before in situ reduction. Adding a noble metal caused a significant drop in the ignition temperature during temperature programmed catalytic partial oxidation (TPCPO). The ignition temperature for partial oxidation coincides well with the temperature for methane dissociation, and is likely correlated to the reducibility of the noble metal oxide. Methane partial oxidation over 0.5 wt% Ni catalysts, both with and without promoter, yielded high selectivity to synthesis gas (>93%) and stable performance for continued operation, but synthesis gas production at temperatures below 1,073 K required a promoter when the catalyst was ignited by TPCPO. Ignition of the CPO reactions by introducing the feed at a high furnace temperature (1,073 K) also enabled formation of synthesis gas, but the reaction was then less stable than obtained with the TPCPO procedure. A dual bed concept attempted to beneficially use the activation and combustion properties of the noble metal followed by the reforming properties of Ni. However, it was concluded that co-impregnated catalysts yielded as high, or even higher conversion of methane and selectivity to synthesis gas.  相似文献   

10.
The catalytic partial oxidation of methane with oxygen to produce synthesis gas was studied under a wide range of conditions over supported ruthenium catalysts. The microreador results demonstrated the high activity of ruthenium catalysts for this reaction. A catalyst having as little as 0.015% (w/w) Ru on Al2O3 gave a higher synthesis gas selectivity than a catalyst having 5% Ni on SiO2. XANES measurements for fresh and used catalyst samples confirmed that ruthenium is reduced from ruthenium dioxide to ruthenium metal early during the experiments. Ruthenium metal is thus the active element for the methane partial oxidation reaction.  相似文献   

11.
Oxygen sorption on perovskite-type oxides can be advantageously used for air separation at high temperature. The large heat of oxygen sorption on these oxide sorbents presents a major challenge for the heat management of the high sorption separation process in practical applications. This paper reports a method to minimize the heat effects by taking advantage of an endothermic process of oxygen vacancy order-disorder phase transition accompanying the oxygen sorption process on perovskite-type oxide sorbents. The oxygen sorption isotherms, phase diagram, exothermic heat of oxygen sorption, and endothermic heat of the order-disorder phase transition for La0.1Sr0.9Co0.9Fe0.1O3-δ were measured by simultaneous TGA/DSC and XRD. The conditions for zero apparent heat of sorption are determined. If the oxygen partial pressure change and adsorption temperature are controlled such that they give an oxygen adsorption amount, which is numerically equal to the ratio of heat of phase transition to heat of oxygen sorption, the net heat released from the oxygen sorption step can be minimized or controlled to be negligible. This strategy for heat effect minimization is demonstrated with the results of TGA/DSC measurements at different operating conditions and air separation by a fixed-bed packed with the perovskite-type oxide sorbent.  相似文献   

12.
A novel process is developed in this paper for utilizing the coalmine-drained methane gas that is usually vented straight into the atmosphere in most coalmines worldwide. It is expected that low-cost syngas can be produced by the combined air partial oxidation and CO2 reforming of methane, because this process utilizes directly the methane, air, and carbon dioxide in the coalmine-drained gas without going through the separation step. For this purpose, a nickel–magnesia solid solution catalyst was prepared and its catalytic performance for the proposed process was investigated. It was found that calcination temperature has significant influence on the catalytic performance due to the different extent of solid solution formation in the catalysts. A uniform nickel–magnesia solid solution catalyst exhibits higher stability than the catalysts in which NiO has not completely formed solid solution with MgO. Its catalytic activity and selectivity remain stable during 120 h of reaction. The product H2/CO ratio is mainly dependent on the feed gas composition. By changing CO2/air ratio of the feed gases, syngas with a H2/CO ratio between 1 and 1.9 can be obtained. The influences of reaction temperature and nickel loading on the catalytic performance were also investigated.  相似文献   

13.
In the hot gas desulfurization process using iron oxide sorbent, the regeneration of the sulfided iron oxide sorbent consists of two reactions: the oxidation of iron sulfide with air, and its reaction with the sulfur dioxide formed during the air oxidation. This part describes the kinetic studies on the reactions of iron sulfide (formed by the reactions of Fe2O3 with H2CO mixture and subsequendy with H2S) with oxygen and sulfur dioxide. The experimental and analysis procedures used are similar to those outlined in Part I of this paper.The activation energies for the oxygen and the sulfur dioxide reactions are found to be 15.63 and 17.5 kcal/mol, respectively. Notably, the product oxides formed in the two cases are different. With air, the reaction is fast and the final product is Fe2O3, whereas with SO2, the major product is Fe3O4, which slowly oxidizes to Fe2O3 in a secondary step. Also, in the latter reaction elemental sulfur is formed.  相似文献   

14.
In this study, cobalt and lead based mixed oxide catalysts were tested for their soot oxidation ability. In addition to a mixed oxide formerly marketed as ceramic paint, a home made set was also prepared by incipient wetness impregnation of a cobalt oxide powder with a lead acetate solution and subsequent calcination. The materials investigated in this study were shown to decrease the peak combustion temperature of home made soot from 500 to 385 °C in air. Soot oxidation tests under inert (N2) atmospheres revealed that the oxidation took place by using the lattice oxygen of the catalyst. Reaction temperature could be further decreased when these mixed oxide catalysts were impregnated with platinum. An optimum platinum loading was determined as 0.5 wt% based on the peak combustion temperature of the soot. The role of Pt was to assist the oxygen transfer from the gas phase to the lattice. It was observed that NO2 is a better oxidizing agent as compared to air whereas NO had hardly any activity against soot oxidation reaction. When the mixed oxide catalyst was impregnated with platinum, the peak combustion temperature was measured as 310 °C in the presence of NOx and air. The catalyst's unique performance was in terms of the rate of soot oxidation. Under the experimental conditions studied here, the soot oxidation was so facile that the oxygen in the gas phase was completely depleted. This stream of oxygen depleted and CO enriched gas phase can be used to reduce NOx in the presence of a downstream or a co-catalyst.  相似文献   

15.
To accelerate the commercial application of mixed‐conducting membrane reactor for catalytic reaction processes, a robust mixed‐conducting multichannel hollow fiber (MCMHF) membrane reactor was constructed and characterized in this work. The MCMHF membrane based on reduction‐tolerant and CO2‐stable SrFe0.8Nb0.2O3‐δ (SFN) oxide not only possesses a good mechanical strength but also has a high oxygen permeation flux under air/He gradient, which is about four times that of SFN disk membrane. When partial oxidation of methane (POM) was performed in the MCMHF membrane reactor, excellent reaction performance (oxygen flux of 19.2 mL min?1 cm?2, hydrogen production rate of 54.7 mL min?1 cm?2, methane conversion of 94.6% and the CO selectivity of 99%) was achieved at 1173 K. And also, the MCMHF membrane reactor for POM reaction was operated stably for 120 h without obvious degradation of reaction performance. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2592–2599, 2015  相似文献   

16.
The oxidation behaviors of four compositions of ZrB2-SiC-ZrC and one composition of ZrB2-SiC were studied at 1700 °C in air and under low oxygen partial pressure. Volatility diagrams for ZrB2-SiC-ZrC and ZrB2-SiC were used to thermodynamically elucidate the oxidation mechanisms. SiO2 and ZrO2 layers formed on the surfaces of ZrB2-SiC-ZrC and ZrB2-SiC oxidized at 1700 °C. A SiC-depleted layer only formed on the surface of the ZrB2-SiC oxidized under low oxygen partial pressure. The oxide layer thickened with increasing ZrC volume content during oxidation in air and under low oxygen partial pressure. The ZrB2-SiC-ZrC oxide surface exploded in air when the ZrC volume content was more than 50%. Under low oxygen partial pressure, the oxide surfaces of all the ZrB2-SiC-ZrC specimens bubbled.  相似文献   

17.
The kinetics of reduction with methane and oxidation with oxygen of Mn3O4 supported on Mg-ZrO2 prepared by freeze granulation has been investigated. The reactivity experiments were performed in a thermogravimetric analyzer (TGA) using different reacting gas concentrations and temperatures in the range of 1073-1223 K. The oxygen carrier particles showed high reactivity during both reduction and oxidation at all investigated temperatures. An empirical reaction model, which assumes a linear relation between time and conversion, was used to determine the kinetic parameters for reduction and oxidation, with chemical reaction being the main resistance to the reaction. The order of reaction found was 1 with respect to CH4 and 0.65 with respect to O2. The activation energy for the reduction reaction was 119 and for the oxidation reaction. The reactivity data and kinetic parameters were used to estimate the solid inventory in the air and fuel reactor of a CLC system. The optimum solid inventory obtained was at a value of ΔXs=0.4. At these conditions, the recirculation rate of oxygen carrier between air and fuel reactor was per MW of fuel, which could be accomplished in an industrial reactor. The high reactivity of the Mn3O4/Mg-ZrO2 with both methane and oxygen showed that this is a very promising oxygen carrier for CLC.  相似文献   

18.
We have studied the conversion of nitric oxide and methane on several H- and Na-ZSM-5 zeolite catalysts in the absence of oxygen. Our results suggest that the NO-CH4 reaction can be explained in terms of a mechanism that starts with a nitric oxide decomposition step followed by the surface reaction of methane with the product oxygen regenerating the active site. We have found that reduced Pd/ZSM-5 catalysts are active for the nitric oxide decomposition reaction but deactivate rapidly due to self-poisoning by product oxygen. By contrast, in the presence of methane these catalysts can exhibit high activity and stability under certain conditions. For instance, when the nitric oxide decomposition and the reaction of methane with the surface oxygen proceed at comparable rates the catalyst is stable but when the methane conversion is lower than that required to remove all the oxygen produced (stoichiometric methane conversion) the catalyst rapidly deactivates. Under some conditions the methane conversion may be higher than the stoichiometric requirement leading to the deposition of carbonaceous species. These carbonaceous deposits can promote the reaction by helping to remove the product oxygen.  相似文献   

19.
Ru-loaded Y2O3 catalyst was investigated for the partial oxidation of methane to synthesis gas. Ru(0.5 wt%)/Y2O3 catalyst afforded a high CH4 conversion of 27% at a CH4:O2 ratio of 5 to give nearly a 1:2 ratio of CO and H2 with a selectivity of 75% at 873 K. Ru(0.5 wt%)/Y2O3 catalyst maintained high catalytic activity over 10 h in the partial oxidation of methane. Carbon deposition of the catalyst surface in the reaction of CH4 was examined by thermogravimetric analyses, and it was found that no carbon deposition occurred on the Ru(0.5 wt%)/Y2O3 catalyst. The synthesis-gas production proceeded basically via a two-step reaction consisting of methane combustion to give H2O and CO2, followed by the reforming of methane from CO2 and steam.  相似文献   

20.
W. Jiang  B. Wei  Z. Lü  Z. H. Wang  X. B. Zhu  L. Zhu 《Fuel Cells》2014,14(6):966-972
A 70 wt.% Sm0.5Sr0.5CoO3 – 30 wt.% Sm0.2Ce0.8O1.9 (SSC–SDC73) composite cathode was co‐synthesized by a facile one‐step sol–gel method, which showed lower polarization resistance and overpotential than those of physically mixed SSC–SDC73 cathode. The polarization resistance of co‐synthesized SSC–SDC73 cathode at 800 °C was as low as 0.03 Ω cm2 in air. Scanning electron microscopy (SEM) images showed that the enhanced electrochemical property was mainly attributed to the smaller grains and good dispersion of SSC and SDC phases within the composite cathode, leading to an increase in three‐phase boundary length. The dependence of polarization resistance with oxygen partial pressure indicated that the rate‐limiting step for oxygen reduction reaction was the dissociation of molecular oxygen to atomic oxygen process. An anode supported fuel cell with a co‐synthesized SSC–SDC73 cathode exhibited a peak power density of 924 mW cm−2 at 800 °C. Our results suggested that co‐synthesized composite was a promising cathode for intermediate temperature solid oxide fuel cells (IT‐SOFCs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号