首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Post‐cyclone (PoC) is a novel secondary dust separator, which collects a certain fraction of the particles escaping through the vortex finder of a reverse flow cyclone. Due to the residual swirl in the vortex finder, the particles in the effluent air are concentrated at the wall of the vortex finder in an outer annulus. The particles in the outer annulus are split from the main stream and collected in a bleed flow. This paper presents the experimentally determined collection efficiencies of various designs of PoC. Depending on the design, operating conditions and the size and density of the particles, PoC can reduce the emission of the parent cyclones by 5% to 50%. In some experiments, the bleed flow from PoC is recycled back to the inlet of the cyclone. Significant improvement in the removal of fines occurs when the bleed flow is recycled to the inlet.  相似文献   

2.
陈建义  高锐  刘秀林  李真发 《化工学报》2016,67(8):3287-3296
通过改变旋向和芯管直径,设计了3种差异旋风分离器,并按中心对称方式组成了3种并联方案:相同分离器、旋向差异分离器和芯管差异分离器并联。在冷态实验装置上,测量了单分离器和并联分离器的性能,并利用FLUENT软件分析了并联分离器的流场。结果表明,并联分离器的效率均高于单分离器,且效率-气速曲线未出现“驼峰”;与相同分离器并联相比,旋向交替变化时并联总压降较小,分离效率也更低,但各分离器流量分配均匀,未发现“窜流”现象;当芯管有差异时,并联总压降增大,各分离器进口流量分配不均匀,且进、出口流量平均相差6.0%,公共灰斗中存在“窜流”,旋流稳定性变差,效率降低。为了保证并联分离器的性能,应采用相同分离器对称并联的方式。  相似文献   

3.
分流型芯管对导叶式旋风管内颗粒逃逸的控制   总被引:3,自引:3,他引:0       下载免费PDF全文
Experimental and computational fluid dynamics was used in this study to predict the escape particles and evaluate the performance of PSC type cyclone tube with slotted vortex finder.The simulation results showed that the PSC type cyclone tube could remove the particles with a diameter greater than 5 μm.The PSC type cyclone tube increased the grade efficiency of particles with a diameter greater than 2 μm as compared with the Shell type cyclone tube.Short circuit flow occurred around the vortex finder slots and there was almost no short circuit flow under the vortex finder inlet.Most small particles escaped from vortex finder slots of the PSC type cyclone tube.The slotted vortex finder could develop “upwards flow” near the vortex finder inlet outside wall and control the escape particles under the vortex finder inlet.The force analysis of particles near the slotted vortex finder slots showed that gas flow carried the particles with a diameter smaller than 3 μm out the separator.  相似文献   

4.
付烜  孙国刚  马小静  时铭显 《化工学报》2010,61(9):2379-2385
利用数值模拟技术,对比考察了旋风分离器采用轴对称双进口和单边切向进口时升气管外壁附近及环形空间的静压和切向速度分布,分析比较这两种进口形式下升气管外切向剪切力和径向压力梯度力对升气管外壁结焦物沉积与积累的影响。结果表明,双入口分离器升气管近壁环向顺、逆压梯度区范围均小于单进口分离器,切向速度沿环向变化不明显,近壁低速易沉积区范围小,且不容易出现油气及催化剂的回流和滞留区,能有效抑制结焦物的沉积;双进口分离器升气管近壁区的平均剪切力比单进口分离器大30%以上,而平均径向压力梯度力比单进口分离器约小17%,能一定程度上削减结焦层厚度,抑制结焦物积累的能力强于单进口。轴对称双进口旋风分离器升气管外壁结焦的倾向将明显小于单切向进口的旋风分离器。  相似文献   

5.
The gas flow fields of a cyclone with different inlet section angles have been studied numerically. The gas flow fields were simulated by means of the Reynolds Stress Transport Model (RSTM). The velocities and pressure drop profiles of these cyclones were investigated. The shortcut flow rates at the bottom of the vortex finder were calculated with different inlet section angles. To analyze the relationship between the inlet section angle and the vortex finder insertion deepness, this paper details the shortcut flow rates at the bottom of the vortex finder for three vortex finder insertion depths. The results indicate that the inlet section angle can decrease the shortcut flow from the bottom of the vortex finder, which has practical importance for the improvement of the separation efficiency. The inlet section angle can also decrease the pressure coefficient of a cyclone. When the inlet section angle is 45 °, the level of decrease is up to 30 %. However, the effect of the inlet section angle on the separation performance is related to the dimension of the vortex finder, i.e., the insertion depth and diameter of the vortex finder, and the effect is different when the cyclone has different vortex finder insertion depths.  相似文献   

6.
常规切向进口旋风分离器的气流进入旋风分离器后必定要经过排气芯管外壁和筒体内壁之间,因此不可避免会使得相当一部分气流没有经过分离空间而直接从排气芯管底部排出(短路流量),这也是影响旋风分离器分离效率的重要因素之一。在前人工作的基础上,对旋风分离器的进口结构进行了改进:使得旋风分离器的入口具有一定截面角,并借助数值计算技术,分别对传统的和具有一定入口截面角旋风分离器内的三维流场进行了数值模拟,计算了芯管底部的"短路流量",结果表明:进口具有一定截面角可以明显减小芯管底部的"短路流量",这对改善旋风分离器的分离效率具有重要的实际意义。  相似文献   

7.
The particle collection efficiencies of axial flow cyclones with eight different geometric configurations, operated at 50 lpm aerosol flowrate, have been evaluated in this study. The geometric variation of test cyclones includes the optional addition of an upside-down cup, two vortex finder lengths, and two cyclone base shapes. Under various configurations, the cutoff aerodynamic particle size of axial flow cyclones changed from 272 to 448 nm. Our study shows that configuration effects on the collection efficiency of axial flow cyclones are different from those of tangential flow cyclones. The observation of different geometric effects on particle collection by axial and tangential flow cyclones is attributed to the flow pattern difference between cyclones of two types. It is further concluded that the optimal configuration for axial flow cyclones is with an abrupt contraction base, without an upside-down cup and with an increased vortex finder length. A simple model combining the model of Leith and Licht (1972) and the tubing loss in 90° bends at high Reynolds numbers has also been proposed to predict the particle collection efficiency curve of the optimal axial flow cyclone among those tested.  相似文献   

8.
赵艳  许伟伟  王建军  王锐  高光才  金有海 《化工学报》2014,65(12):4699-4708
基于商用软件Fluent 6.3.26,采用雷诺应力模型及DPM离散相模型并结合理论分析,对基于喷嘴造旋的射流式分离器内两相流动特性进行了模拟计算,得到了较为全面的两相流动规律与细节.结果显示,分离器内部切向速度峰值可达160 m·s-1,自由涡区的切向速度约为130 m·s-1,旋流强度明显高于传统旋风单管;沿轴向下,下行流流量逐次减少,其中稳流体顶部下行流降低最为明显,下行流减少致使颗粒卷入内旋流概率增加,分离效果下降;分离器内部局部存在顶部贴壁射流、射流区二次流及灰斗口旋涡流等次级流动;分离器压降约为27.43 kPa,喷嘴区内外旋流能耗分别为4.57 kPa(21.8%)、5.76 kPa(27.6%),稳流体区内外旋流能耗分别为5.85 kPa(27.6%)、4.01 kPa(18.9%);分离器对应的切割粒径较小,约为1.6 μm,极限粒径约为10 μm,符合工业应用要求;基于所建颗粒受力模型及模拟条件下,分离空间可分离的临界粒径为1~2 μm,3 μm及以上颗粒的逃逸浓度小于 0.15 g·m-3,满足下游烟机对气流的净化要求.  相似文献   

9.
孙占朋  孙国刚  独岩 《化工进展》2018,37(3):861-866
气流分级器性能的优劣很大程度上取决于流场分布,改变常规旋风分级器的切向进风口位置,在分级空间建立不同类型的离心流场,采用数值模拟和分级试验手段分析了分级流场形态对颗粒运动过程和分级性能的影响。结果表明,传统旋风分级器边壁下行流造成粗粉中细颗粒夹带较多,影响分级精度;新型旋风分级器内形成上下两个旋涡,上旋涡均为上行气流,其流量约占总风量的80%,下旋涡携带细颗粒较少,降低了细颗粒进入粗组分的概率;上旋涡可实现对边壁区的细颗粒的轴向淘洗、再分级,提高了分级精度。试验结果表明,入口气速从10m/s增加至22m/s。相较于传统旋风分级器,新型旋风分级器的分级性能明显改善,分级精度指标平均提高27%,压降损失为传统旋风分级器的53%~62%。  相似文献   

10.
利用FLUENT提供的RSM和DPM模型对不同入口高度和宽度的气液旋流分离器进行了数值模拟. 结果显示,当增大宽度或高度时切向速度与分离效率减小,但压降降低;当宽度大于环形空间的间隙时,部分进气流量直接作用于排气管上,影响内部流场;减小入口宽度或高度时引起的压降无明显差别,但减小宽度可提高分离效率而高度则相反. 入口高度(a)与分离器筒体直径(D)的比值a/D和宽度(b)与分离器筒体直径(D)的比值b/D约为0.2时,压降基本相同,但分离效率相差约3.6%. a/D约为0.38时,分离效率约为95.6%,压降约为340 Pa;而b/D约为0.25时效率为96.3%,压降约为320 Pa,入口宽度对分离器性能的影响比入口高度更显著.  相似文献   

11.

An electrocyclone designed with a central discharge wire was built and used to investigate the performance factors affecting its particle collection efficiency by varying the operational conditions and parameters in the particle size range of 0.5 to 10 w m. A voltage of 0 to 9 kV was applied to the discharge wire varying in terms of diameter and length. Two types of vortex finder materials, aluminum and acryl, in three lengths, 2.5, 3.5, and 4.5 cm, were employed to examine the effects of electrostatic force. An increase in applied voltage and a decrease in wire diameter were found to boost collection efficiency, particularly at low flow rates for small particles. Many small particles induced in the cyclone were collected at the bottom of the cyclone cone and in the vortex finder that was situated close to the discharge wire. It was also found that the aluminum vortex finder yields higher collection efficiency than the acryl vortex finder and that the length of vortex finder plays a more important role in particle collection efficiency of the electrocyclone than that of an ordinary cyclone.  相似文献   

12.
《分离科学与技术》2012,47(15):2450-2460
ABSTRACT

A numerical study was carried out to investigate the effect of separation space diameter on the performance of a novel reverse flow tangential inlet cyclone design by using the Eulerian-Lagrangian approach. The design of this cyclone is based on the idea of increasing vortex length and decreasing pressure drop compared with traditional cyclones. This novel cyclone differs from the traditional cyclones with separation space and vortex limiter instead of the conical part. A qualitative numerical study was performed to analyze the effect of separation space diameter on the cyclone performance at different flow rates by evaluating velocity profile, pressure drop, fractional and overall efficiencies. The results show that the collection efficiency of smaller particles increases while pressure drop decreases significantly with the increase in separation space diameter for D1/D < 0.5.  相似文献   

13.
A cyclone technology for a vacuum cleaner—axial inlet flow cyclone and the tangential inlet flow cyclone — to collect dusts efficiently and reduce pressure drop has been studied experimentally. The optimal design factors such as dust collection efficiency, pressure drop, and cut-size being the particle size corresponding to the fractional collection efficiency of 50% were investigated. The particle cut-size decreases with reduced inlet area, body diameter, and vortex finder diameter of the cyclone. The tangential inlet twin-flow cyclone has good performance taking into account the low pressure drop of 350 mmAq and the cut-size of 1.5 μm in mass median diameter at the flow rate of 1 m3/min. A vacuum cleaner using tangential inlet twin-flow cyclone shows the potential to be an effective method for collecting dusts generated in the household.  相似文献   

14.
分别选用2台和4台直径300 mm的相同PV型旋风分离器作为分离元件,共用进气管、集气室和排尘室,以中心对称方式组成两种并联分离器,并通过数值模拟比较单分离器与两种并联方案中各分离元件气相流动的特点. 气体介质为常温常压空气,入口气速15~30 m/s. 结果表明,2台或4台并联时各分离元件流量偏差分别不超过0.35%和0.28%,压降最大偏差为0.79%和0.43%,流量分配均匀,灰斗内窜流返混不明显,且4台并联时效果更好. 4台并联时分离元件排尘段的稳定性指数比2台并联或单分离器降低过半,旋流稳定性显著增强. 对称排列的分离元件在公共灰斗中会形成具有自稳定性的对称涡系,对分离元件内旋进涡核的摆动有约束作用,旋流稳定性增强.  相似文献   

15.
王立新  吴冉 《化学工程》2012,40(1):64-67,72
双循环旋风分离器通过将主进口设置在筒体中部,将顶部进气口设置为回流口,消除了进气口附近的二次流,避免了短路流,将大于3μm颗粒的分离效率提高至接近100%,并避免了少量11—15μm颗粒的短路逃逸。为了探索该设备的除尘机理,借助CFD软件,通过数值模拟研究的方式,辅助分析了2种进气口在分离性能上不同,传统旋风分离器不能完全分离3—8μm和11—15μm颗粒的机理,以及消除二次流的方法。计算结果表明:当回流气速低于主进气速时,会产生类似于顶端进气口的现象,即二次流、灰环和短路流,降低了小于6μm颗粒的分离效率。当回流气速略大于主进气速时,可以完全消除主进气口附近的二次流,使得所有粒径颗粒的分离效率都较高。模拟结果与实验结果从定性的角度符合较好。  相似文献   

16.
A mathematical model has been developed for calculation of cut-off size and fractional efficiencies in cyclone separators, by taking into account the effects of flow, particle and geometrical parameters, and acceleration assuming that the mixture of fluid and particles is homogenous, and acceleration diminishes depending on the friction and geometry. Collection efficiency curves and cut-off size values predicted by the proposed model showed a good agreement with experiments over a wide range of inlet velocities for different types of cyclones. Comparison of the obtained results with semi empirical models available in literature also indicated that the present model may be used successfully for determination of the performance of a tangential inlet cyclone. Analyses of the effects of various parameters reveals that, in addition to flow and geometrical parameters, surface friction, vortex length and flow regimes play an important role on cyclone performance especially in small cyclones.  相似文献   

17.
This paper presents the effects of solid loading on the performance of a cyclone with pneumatic extraction of solids. The cyclone is a non‐conventional design, especially used for hot‐gas cleaning applications such as pressurized fluidized bed combustors (PFBC). A scaled‐down cold‐flow model was employed for the research. Experiments were conducted at 9–14 m/s inlet gas velocities, inlet solid loadings ranging from 30 to 230 g/kg gas, and bottom gas extraction percentages from 0.3 to 1.5%. Experimental results of pressure drop resistance coefficients and collection efficiency were compared with literature predictions. At PFBC operating conditions, cyclone geometry and solid concentration are the main parameters influencing cyclone pressure drop and collection efficiency. The vortex penetration in dipleg causes lower pressure drop values and higher collection efficiencies than predicted. These parameters can be suitably predicted for PFBC cyclones by introducing a modified penetration length in Muschelknautz's model [1]. For the present cyclone design, a new correlation of pressure drop, including the influence of solid loading, is proposed. A new method for detecting cyclone fouling, not previously addressed, is also presented, based on the evolution of the pressure drop resistance coefficient. An enhanced separation efficiency has been found, related to collection efficiency, which is especially important for particle sizes below 10 μm revealing agglomeration effects.  相似文献   

18.
Vortices motion in the anisotropic turbulent flow of cyclones makes a vital impact on flow stability and collection performance. Nevertheless, there remains a lack of clarity in the overall feature of vortices motion. In this work, a numerical analysis was conducted to clarify the complex motion of the vortex core in a cyclone separator. The validity of the numerical model was demonstrated by comparing the computational results with experimental data in the literature. As revealed by the results, the vortex core not only has a precession motion about the geometrical center axis but also does a nutation motion in the axial direction. The frequencies of the precession motions show two main peaks. And the magnitudes of the precession and nutation motions have non-uniform distributions in the cyclone. Moreover, the precession-nutation motions of the vortex cores exhibit a similar fluctuant pattern to the dust ring on the separator wall. The inlet gas velocity and the inlet solid loading show vital effects on the magnitudes and frequencies of precession and nutation motion.  相似文献   

19.
刘鸿雁  韩天龙  王亚  黄青山 《化工学报》2018,69(5):2081-2088
针对小直径水力旋流器,设计了不同内置挡板式的溢流管和底流管,实验研究了新型出口挡板结构对水力旋流器分离性能的影响。研究结果表明:内置挡板溢流管适用于处理量较大的工况,与传统溢流管相比,分离效率略有降低,但在高流量下其压降的降低幅度可达11.11%,挡板宜采用相对较窄、较短、三块120°间隔设计方式;底流管内置挡板采用十字交叉结构可稳定内旋流,使分离效率最大可提高5.96%;新型内置挡板的溢流口与底流口相耦合,可同时实现提高分离效率和降低压降的目标。此外,在相同情况下,发现溢流管内置挡板可消除水力旋流器内部的“空气柱”,据此推断“空气柱”并非由内部空气形成,而是其内部负压中心形成的某种湍流程度较高的强制旋流涡。  相似文献   

20.
范军领  何昊  张攀  陈光辉 《化工进展》2022,41(8):4025-4034
以α型旋风分离器为研究对象,基于欧拉-拉格朗日方法,采用雷诺应力模型(RSM)、颗粒离散相模型(DPM)、E/CRC磨损方程对分离器内流场与磨损特性进行数值模拟。通过分析速度矢量、切向速度、颗粒运动轨迹等参数的分布规律,研究了局部磨损对设备内流场及分离性能的影响。结果表明,α型旋风分离器入口正对壁面磨损最为严重,最大磨损率约为1.4×10-5kg/(m2·s)。磨损引起壁面几何结构的改变,导致气流方向发生偏转,不利于主流的稳定与固体颗粒的分离。随局部磨损的加剧,排气管下口短路流急剧增大,从而导致排气管下口以下区域流体流量减少,外涡切向速度降低;细颗粒的逃逸现象更加明显,粗颗粒运动轨迹趋于重合,更易形成高浓度灰环加剧壁面磨损。与未磨损时相比,局部磨损厚度50mm时,3μm粒径颗粒的分离效率由74.38%降低至54.97%,分割粒径d50由0.73μm增大至2.36μm;设备压降降低了约15.41%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号