共查询到19条相似文献,搜索用时 78 毫秒
1.
张卫华 《广东输电与变电技术》2006,(6):20-24
通过混合算法来改进遗传算法是一种可行的方向。在前人研究的基础上进一步提出了一种能够保持遗传算法、模拟退火算法和禁忌搜索算法优点的混合遗传算法。该算法显著改善了遗传算法早熟收敛和局部搜索能力差的不足,具有良好的全局寻优能力和局部搜索能力,并在实际系统应用中验证了它的有效性。 相似文献
2.
基于电网分区的多目标分布式并行无功优化研究 总被引:27,自引:8,他引:27
针对集中式并行无功优化的瓶颈问题,建立了基于电网分区的多目标分解协调模型,并采用辅助问题原理(APP)进行分布式并行计算,将全网的多目标无功优化问题分解为多个子网的多目标并行优化问题:基于地域的系统分解与协调符合电网市场化发展的方向。仿真结果表明,本算法具有较强的收敛性和快速性。 相似文献
3.
针对传统粒子群优化算法“早熟”与后期收敛速度慢的缺点,提出了一种基于并行自适应粒子群优化算法的电力系统无功优化方法。该方法首先将初始种群随机划分成Ⅳ个子群,然后分别在各子群中以所提方法寻优,从而实现了算法的并行计算。为避免各子群陷入局部最优解,采用二值交叉算子使各子群问的信息共享并更新相关粒子位置,保证了算法的全局搜索能力并维持了种群的多样性。同时,各子群寻优过程中,根据利己、利他及自主3个方向对当前搜索方向自适应更新,提高了算法的收敛速度。将所提出算法在IEEE30节点系统上进行了仿真验证,结果证明了并行自适应粒子群算法用于无功优化的可行性和有效性。 相似文献
4.
为考虑负荷变动下动态无功优化控制变量全天动作次数的限制,针对其多目标、强时空耦合的特点,以全天电能损耗最小、变压器分接头和电容器投切次数最少为目标函数,通过改进调节变量动作的时间约束,提出一种更加实用的新模型.利用并行算法计算不同目标函数,并通过多种信息素交换方可得到多组的较优解,增加了算法的灵活性和实用性.本文蚁群算法在寻优过程中不仅计及整个网络电能损耗的减少,而且改进了蚁群间信息素交换规则,因此能够较快地找到对电能损耗影响较大的节点,提高搜索速度.通过IEEE14、IEEE30系统仿真计算验证了该模型及算法的有效性和可行性.结果表明该文模型及算法能够有效的调节及分配控制变量的动作次数,对调节时机的选择也更为准确. 相似文献
5.
6.
混沌模拟退火算法在无功优化中的应用 总被引:1,自引:0,他引:1
为了更有效地改进处理无功优化问题的方法,提出了混沌模拟退火(CSA)算法,该算法是一种基于混沌变量的改进模拟退火算法,结合了混沌算法的全局遍历性和模拟退火算法的启发式规则,在模拟退火算法的搜索过程中加入了混沌算法的优点。利用混沌算法确定算法的初始温度,有效地减小了搜索空间,同时利用混沌算法确定模拟退火算法中的扰动准则,使算法有效跳出局部最优解。最后将混沌模拟退火算法应用于电力系统无功优化中,通过对IEEE 6和IEEE 30节点以及实际129节点系统的仿真验证了该算法应用的有效性。 相似文献
7.
8.
9.
改进禁忌算法在无功优化中的应用 总被引:2,自引:0,他引:2
提出一种基于改进禁忌算法的无功优化方法,该算法不仅对初值没有特殊要求,而且减少了在候选解集中为了达到一定数量满足约束的个体而进行的大量搜索与计算;同时解决了禁忌算法在高精度情形下,无法爬坡的缺点。最后在IEEE30节点系统上验证了该算法的优越性。 相似文献
10.
基于并行协同粒子群优化算法和PC集群的无功优化 总被引:1,自引:1,他引:1
针对大规模电力系统无功优化高维度、非线性、不连续的问题,提出一种并行协同粒子群优化算法.该算法基于消息传递接口技术,采用二级并行的方案求解无功优化问题.第1级并行是通过控制变量分组,将原优化问题分解成几个相互关联的子优化问题,每一个子优化问题对应一个子粒子群,各子粒子群相互协同,共同求取最优解.第2级并行是指用粒子群优化算法求解子优化问题时使用多个进程并行求解,进程间采用对等模式分配计算任务,提高了优化效率.此外,为了增强粒子群优化算法的全局寻优能力,在优化过程中对其参数进行了动态调整.通过在PC集群上对IEEE 118节点系统和IEEE 300节点系统进行仿真计算,验证了该算法能取得较好的优化结果,具有较高的加速比和可扩展性,能满足大规模电力系统无功优化的需要. 相似文献
11.
电力系统动态无功优化并行算法及其实现 总被引:6,自引:0,他引:6
由于全天24个时段的动态无功优化模型需要考虑变压器分接头和电容器投切开关的允许动作次数限制,当采用引入离散惩罚机制的非线性原对偶内点法求解时,其修正方程的维数会随系统规模的增大而急剧增大,但不难发现其修正方程系数矩阵具有对角加边分块结构,可将其解耦为25个低维线性方程组.从而提出一种粗粒度的并行计算方法,并在基于消息传递接口(MPI)机制的并行计算环境下实现.将所提算法应用于一个实际的14节点和IEEE 118节点系统的实践表明,它能够有效地提升计算速度,在大型电力系统中有着良好的应用潜力. 相似文献
12.
利用新型优化理论-遗传算法进行电网无功功率优化,分析了简单遗传算法各个进化参数对无功优化性能的影响,并对简单遗传算法的生殖操作做了改进,引入多个种群同时进行优化搜索,大大降低遗传控制参数的不当设定对优化结果的影响.通过算例表明多种群遗传算法对抑制未成熟收敛的发生有明显的效果,并且经过同IEEE14节点配电网的算例结果比较,证明了该方法在电网无功优化中的有效性. 相似文献
13.
遗传算法(GA)是近10年来发展的基于自然选择规律的一种优化方法,算法能成功的解决无功变量中的离散问题,避免常规数学优化方法的局部最优现象。根据众多参考文献,阐述了简单遗传算法(SGA)以及GA与其他算法相结合的算法在电力系统无功优化中的应用和今后的发展方向。 相似文献
14.
将免疫遗传算法用于电力系统无功优化,其特点在于用基因座信息熵和免疫选择机制,提高种群的多样性,增加搜索空间,促进全局最优。通过对IEEE33节点系统的计算,验证了该算法能有效提高无功优化的收敛速度和优化效果。 相似文献
15.
基于混沌遗传算法的电力系统无功优化 总被引:7,自引:0,他引:7
针对遗传算法在求解大规模电力系统无功优化问题中存在的收敛速度慢、易早熟的缺点,提出了一种新的无功优化算法——混沌遗传算法CGA。该方法结合混沌优化所具有的遍历性、随机性和规律性的特点,在遗传进化过程中引入混沌移民算子,通过混沌移民操作维持群体中染色体的多样性,以克服传统遗传算法中由于近亲繁殖所导致的早熟问题,确保算法的全局收敛性,加快计算速度。通过对某地区42节点系统进行仿真计算,该方法相比于简单遗传算法,计算速度提高了45%,收敛到全局最优的概率提高了1.25倍。 相似文献
16.
无功优化是电力网络优化的主要措施,其实质是一个多目标非线性混和优化问题。采用免疫遗传算法来研究该问题的求解方法就是在传统遗传算法的基础上,借鉴生物免疫机制中抗体的多样性保持策略和记忆抗原的特点,大大提高了算法的全局搜索和局部搜索能力。实验表明,免疫遗传算法具有很好的全局收敛性,能有效解决无功优化问题。 相似文献
17.
局部搜索量子遗传算法及其无功优化应用 总被引:1,自引:0,他引:1
针对量子遗传算法局部寻优能力差的不足,提出一种局部搜索量子遗传算法,用于电力系统无功优化.该方法将局部搜索引入到量子遗传算法中,先进行全局寻优,当全局寻优搜索到的最优解经过多次迭代没有变化时,在此解附近产生小的寻优区间,进行局部寻优,以使算法同时具有较强的全局和局部搜索能力.复杂测试函数和IEEE30节点测试系统的仿真实验表明,该方法在寻优能力、收敛速度和稳定性方面优于文献中的新量子遗传算法、进化规划等多种方法. 相似文献
18.
改进遗传算法在无功优化中的应用 总被引:15,自引:0,他引:15
运用浮点数编码的改进遗传算法求解无功优化问题,在编码方式上改变了二进制编码、译码的烦琐操作,以及浮点数的交叉、浮点数变异操作和不等交叉、变异概率的选取,提高了算法的收敛速度和求解精度。通过对IEEE30节点测试系统的计算分析,证明了该方法是行之有效的。 相似文献
19.
基于改进遗传算法与原对偶内点法的无功优化混合算法 总被引:1,自引:0,他引:1
基于改进遗传算法和原对偶内点法提出一种求解无功优化问题的混合算法。首先通过改进遗传算法求解无功优化问题中的离散变量,然后采用原对偶内点法求解与已获得离散变量最匹配的连续变量。在改进遗传算法中采用交叉、变异算子并基于可行域规则处理离散约束,有效提高了混合优化算法的整体寻优效率。在IEEE 118节点系统中的仿真计算结果验证了本文方法的有效性。该方法已应用于福建电网自动电压控制系统中。 相似文献