首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of outer hair cell (OHC) loss on evoked potential (EVP) thresholds, amplitudes and forward masking (FWM) functions have been fairly well characterized. In contrast, the effects of inner hair cell (IHC) losses are largely unknown, primarily due to the difficulty of producing selective IHC lesions. Recent studies have shown that IHCs of the chinchilla are preferentially damaged by the anticancer drug, carboplatin. In this study, we administered a single 100 mg/kg dose of carboplatin to four chinchillas, to examine the effects of IHC lesions on EVPs measured from the inferior colliculus (IC-EVPs). Thresholds and amplitude functions were measured for 0.25-16 kHz tone bursts, and FWM functions were measured at 1, 2 and 4 kHz, using masker probe intervals of 2, 5, 10, 20, 40 and 80 ms, before and 1-2 months after carboplatin treatment. Histology revealed IHC lesions ranging from approximately 15 to 90%, with virtually no loss of OHCs. Surprisingly, even massive IHC lesions were not associated with elevations of IC-EVP thresholds. IC-EVP amplitudes at suprathreshold levels were sometimes depressed, sometimes enhanced, and in some cases unchanged. IHC lesions increased susceptibility to FWM, particularly at intermediate (10-20 ms) masker-probe intervals, without significantly changing the overall time course of FWM. The results provide new perspectives on the contribution of IHCs to FWM, and on the ability of the central auditory system to adapt to a significant reduction of neural input from the cochlea.  相似文献   

2.
We investigated the auditory brainstem response (ABR) recovery from forward masking using toneburst maskers and probes. Two subject groups matched for hearing thresholds were evaluated: normal-hearing young adults (21-40 years) and older subjects (63-77 years) with normal audiometric thresholds. Stimuli consisted of 1, 4 and 8 kHz tonebursts, with 2-4 cycle rise/fall time and no plateau. Forward maskers were tonebursts of the same frequency, with a 5 ms rise/fall time and a 20 ms plateau time. Probes were presented at 40 dB above threshold, and the forward masker was adjusted to a level that just eliminated the ABR to the 40 dB sensation level toneburst when the probe onset occurred at masker offset. Forward-masker intervals varied from 2 to 64 ms. ABR wave V latencies were similar for the young and old age groups regardless of toneburst frequency. Under forward-masking conditions, wave V latency was prolonged for the shorter intervals, and recovered to baseline latency by 64 ms. The forward-masker recovery functions were nearly identical for the two age groups for the 1 kHz toneburst. In contrast, there were clear differences in the recovery functions for the two age groups for the 4 and 8 kHz tonebursts. Specifically, the mean latency shift was greater for the aged group for forward-masker intervals of 16 ms or less. The two age groups showed identical latency shifts for longer forward-masker intervals. These data demonstrate prolonged recovery from forward masking in older human subjects. As these subjects had audiometric thresholds within normal limits, one plausible interpretation of this finding is that the prolonged recovery time is a manifestation of an aging effect on the central auditory nervous system rather than the periphery.  相似文献   

3.
The chemokine interleukin 8 (IL-8) was instilled into the round window niche of rats through a small perforation in the tympanic membrane in order to study its effect on inner ear function by electrophysiological and morphological techniques. The frequency-specific auditory brainstem response (ABR) was recorded at the frequencies 4, 8, 10, 12, 16 and 20 kHz just before and 1, 2, 5 and 14 days after instilling IL-8 to ascertain the hearing level during each interval. Morphological examination by light microscopy was performed during the same interval following the instillation of IL-8. On day 1, the rise in ABR threshold was within 5 dB SPL (non-significant elevation). However, a significant threshold elevation (above 5 dB SPL) occurred in high-frequency areas (16 and 20 kHz) on day 2, and in middle frequency areas (10 and 12 kHz) on day 5 with sensorineural hearing loss type intensity-latency curves. By day 14, the elevated thresholds had returned to pre-instillation levels. In the lowest areas (4 and 8 kHz), no significant threshold elevation was detected at any time during the observation period. By light microscopy, on day 1, clusters of inflammatory cells (predominantly neutrophils) were observed just outside the round window membrane (RWM), while only a few neutrophils were detected in the cochlea. These cells were still present outside the RWM on day 2. The neutrophils had disappeared by day 5 and only macrophages were present on the middle ear side of the RWM. However, throughout the observation period, the organ of Corti and stria vascularis appeared to be intact. These results suggest that IL-8 in the middle ear cavity is able to influence inner ear function.  相似文献   

4.
Cisplatin (CDDP) is a widely used chemotherapeutic agent. Unfortunately, CDDP is highly ototoxic. We tested D-methionine (D-Met), a sulfur containing compound, as an otoprotectant in male Wistar rats. Complete data sets were obtained for five groups of five animals each, including a treated control group (16 mg/kg CDDP), an untreated control group (administered an equivalent volume of saline) and three groups that received either 75, 150, or 300 mg/kg D-Met 30 min prior to the 16 mg/kg CDDP dosing. Auditory brainstem response (ABR) thresholds were obtained in response to clicks, and 1 kHz, 4 kHz, 8 kHz, and 14 kHz toneburst stimuli, before and 3 days after drug administration. Scanning electron microscopy (SEM) was used to examine the outer hair cells of the apical, middle and basal turns of the cochlea. Animal weight was measured on the first and final day. D-Met provided excellent otoprotection even at the lowest level with complete otoprotection obtained for the 300 mg/kg dosing as measured by both ABR and SEM. D-Met also markedly reduced weight loss and mortality. All animals receiving D-Met (15/15) survived to the end of the study period as opposed to only 5/10 of the treated controls.  相似文献   

5.
It is believed that the sound-induced travelling wave in the mammalian cochlea is enhanced and sharpened by a positive feedback mechanism. This causes the passive linear basilar membrane growth function to become non-linear. The present paper shows that nonlinear basilar membrane vibration is due to the nonlinear growth function of the receptor potential of outer hair cells, which can be described by a 2nd-order Boltzmann function. Since intensity coding in the inner ear depends on an interaction of nonlinear basilar membrane motion and nerve fibers with three different types of synaptic threshold and growth function, the process is directly dependent on an intact mechanoelectrical transduction of outer hair cells. According to the proposed model, a loss in efficiency of outer hair cell mechanoelectrical transduction must lead to both a reduction in gain (i.e., hearing loss) and a linearizing of the response. As a result, once above threshold, the changes of stereociliary displacement, basilar membrane displacement and neural firing rate per unit change of sound intensity must be larger than for the healthy cochlea with its compressive nonlinearity.  相似文献   

6.
Reactive oxygen species, which are cytotoxic to living tissues, are thought to be partly responsible for noise-induced hearing loss. In this study R-phenylisopropyladenosine (R-PIA), a stable non-hydrolyzable adenosine analogue which has been found effective in upregulating antioxidant enzyme activity levels, was topologically applied to the round window of the right ears of chinchillas. Physiological saline was applied to the round window of the left ears (control). The animals were then exposed to a 4 kHz octave band noise at 105 dB SPL for 4 h. Inferior colliculus evoked potential thresholds and distortion product otoacoustic emissions (DPOAE) were measured and hair cell damage was documented. The mean threshold shifts immediately after the noise exposure were 70-90 dB at frequencies between 2 and 16 kHz. There were no significant differences in threshold shifts at this point between the R-PIA-treated and control ears. By 4 days after noise exposure, however, the R-PIA-treated ears showed 20-30 dB more recovery than saline-treated ears at frequencies between 4 and 16 kHz. More importantly, threshold measurements made 20 days after noise exposure showed 10-15 dB less permanent threshold shifts in R-PIA-treated ears. The amplitudes of DPOAE also recovered to a greater extent and outer hair cell losses were less severe in the R-PIA-treated ears. The results suggest that administration of R-PIA facilitates the recovery process of the outer hair cell after noise exposure.  相似文献   

7.
Electrical stimulation of the cochlea may excite residual inner hair cells, either by direct electrical stimulation or through a mechanical event. Hair cell mediated responses of the auditory nerve to electrical stimulation were estimated from forward masking of the compound action potential evoked by an acoustic probe. Masking by a fixed electrical masker peaked for probes equal in frequency to the pulse repetition rate and its second harmonic, suggesting a spatially tuned profile of excitation within the cochlea. Furthermore, the tuning curves for masking of a fixed acoustic probe peaked for masker pulse rates close to the frequency of the probe. A secondary peak of masking was commonly seen for electrical stimulation at one half of the probe frequency, suggesting masking of the probe by the second harmonic of the electrical stimulus. These results suggest that pulsatile stimulation at the base of the cochlea generates a spectrally rich mechanical disturbance in which each component propagates to its place of resonance in the cochlea.  相似文献   

8.
The surface specimen technique was used to study both spiral organs of 28 normal guinea pigs of four age groups: less than 24 hours, 6 weeks, 3 months and 1 year. Damaged hair cells were recorded for the whole of each spiral organ on cochleograms. The mean percentage number of outer hair cells damaged per age group was found to increase as a power function of age. In the animals aged less than 24 hours the mean percentage of damaged outer hair cells was 0.45%; in the 6-week animals, 1.85%; in the 3-month animals, 3.19%; and in the 1-year animals, 6.82%. At all ages outer hair cell loss was maximal in the third row, and towards the apex of the cochlea. Inner hair cell loss was very slight, with a maximum of 9 damaged inner hair cells per cochlea.  相似文献   

9.
In the adult mammalian cochlea, post-injury hair cell losses are considered to be irreversible. Recent studies in cochlear explants of embryonic rodents show that the organ of Corti can replace lost hair cells after injury. We have investigated this topic in vivo during the period of cochlear development. Rat pups were treated with a daily subcutaneous injection of 500 mg/kg amikacin for eight consecutive days between postnatal day 9 (PND 9) and PND 16. During this period the organ of Corti is not fully mature, but hair cells are hyper-sensitive to aminoglycoside antibiotics. Scanning and transmission electron microscopy was used to evaluate morphological changes in the organs of Corti during the treatment and at different post-treatment periods, up until PND 90. A massive loss in outer and inner hair cells was observed at least as early as PND 14. A prominent feature in the apical part of cochleas at PND 21 and 35 was the transient presence of small atypical cells in the region of pre-existing outer hair cells. These atypical cells had tufts of microvilli reminiscent of nascent stereociliary bundles. A second striking observation was the replacement of degenerating inner hair cells by pear-shaped supporting cells throughout the cochlea. These cells were covered with long microvilli, and their basal pole was contacted by both afferent and efferent fibers, as in the early stages of inner hair cell maturation. At PND 55 and 90, these features were not clearly observed due to further cytological changes in the organ of Corti. It is possible that an attempt at hair cell neodifferentiation could occur in vivo after an amikacin treatment in the rat during the period of cochlear hyper-sensitivity to antibiotic.  相似文献   

10.
This study determined the effect of acoustic overstimulation of the adult cochlea on axons in the cochlear nucleus. Chinchillas were exposed to an octave-band noise centered at 4 kHz at 108 dB sound pressure level for 1.75 h. One chinchilla was never exposed to the noise, and several others had one ear protected by an ear plug or prior removal of the malleus and incus. Exposure of unprotected ears caused loss of inner and outer hair cells and myelinated nerve fibers, mostly in the basal half of the cochlea. Cochlear nerve fiber degeneration, ipsilateral to the exposed ears, was traced to regions of the cochlear nucleus representing the damaged parts of the cochlea. In silver impregnations of a deafferented zone in the posteroventral cochlear nucleus, the concentration of axons decreased by 43% after 1 month and by 54% after 2 months. However, by 8 months, the concentration of thinner axons, with diameters of less than 0.46 microm, increased by 46-90% over that at 2 months. The concentration of axons with larger diameters did not change. Between 2 and 8 months small axonal endings appeared next to neuronal cell bodies. This later increase of thinner axons and endings is consistent with a reactive growth of new axons of relatively small diameter. The emergence of small perisomatic boutons suggests that the new axons formed synaptic endings, which might contribute to an abnormal reorganization of the central auditory system and to the pathological changes that accompany acoustic overstimulation.  相似文献   

11.
Developmental exposure of Long-Evans rats to 0, 1, 4, or 8 mg/kg/day Aroclor 1254 (A1254) from Gestational Day 6 through Postnatal Day 21 produces an elevated behavioral threshold for a 1-kHz tone. Brainstem auditory evoked responses (BAERs) were assessed in a subset of these animals (about 1 year old) using filtered clicks at 1 (65 and 80 dB SPL), 4 (60 and 80 dB SPL), 16 (40 and 80 dB SPL), and 32 (40 and 80 dB SPL) kHz. Aroclor 1254 decreased BAER amplitudes at 1 and 4 kHz, but not at 16 or 32 kHz. A dose-related decrease in the baseline-to-peak P1A amplitude was observed for the 1-kHz (80-dB) stimulus. Doses of 1, 4, or 8 mg/kg/day A1254 decreased the peak-to-peak amplitude of both P1AN1 and P1BN1 for a 1-kHz (80-dB) stimulus. Doses of 4 and 8 mg/kg/day A1254 decreased the peak-to-peak amplitude of N1P2 and P2N2 for a 4-kHz (60-dB) or 1-kHz (80-dB) stimulus. At 8 mg/kg/day, A1254 also increased the latency of peak P4 at 1 kHz (65 dB). The decreases in peak P1A amplitudes are consistent with a dysfunction of the cochlea and/or auditory nerve. Together, the data confirm that developmental exposure of rats to A1254 produces a permanent low- to mid-frequency auditory dysfunction and suggest a cochlear and/or auditory nerve site of action.  相似文献   

12.
Nitric oxide (NO) not only has normal physiological roles like vasodilation and neurotransmission in the living organism, it could also have possible neurodestructive effects under certain pathological conditions. The present study aimed to determine whether direct exposure of guinea pig cochlea to a NO donor like sodium nitroprusside (SNP), or a nitric oxide synthase (NOS) inhibitor like N(G)-nitro-L-arginine methyl ester (L-NAME), would cause damage to the auditory hair cells. A piece of gelfoam was placed on the round window of the right ear of adult albino guinea pigs. It was then soaked with 0.1 ml of SNP (3.4 microM), 0.1 ml of L-NAME (9.3 microM or 18.5 microM) or 0.1 ml of injection water, the vehicle used to dissolve the above chemicals. Twelve animals receiving SNP were perfused 1 day, 2, 3 and 7 days later, with three animals being used for each survival period. Six animals receiving L-NAME were allowed to survive up to 7 days before perfusion. Eight animals receiving injection water or 0.45% saline were used as controls. With the scanning electron microscope, the inner and outer hair cells were counted over a 1 mm length of the basilar membrane in each turn of every cochlea. The results showed that, in animals treated with L-NAME at both concentrations stated, no significant loss of either inner or outer hair cells was noted in any part of the cochlea studied. However, as early as 1 day after SNP treatment, a striking loss of inner and outer hair cells was observed in the three lower turns of the cochlea. Damage to the outer hair cells was extended to the apical turn with increasing survival period, but no significant loss of inner hair cells was evident in the apical turn at any of the survival periods studied. To rule out the possibility that the effects were due to the presence of cyanide, a metabolite of SNP, hydroxycobalamin was introduced into the scala tympani of three animals through a cannula-osmotic pump device during SNP treatment. There was no significant difference in the results between the groups with and without hydroxycobalamin infusion 7 days after SNP treatment. The present study suggests that an excessive production of NO in the inner ear could lead to extensive loss of hair cells.  相似文献   

13.
Nitric oxide synthase III (NOS III) was identified in the guinea pig cochlea on an ultrastructural level using a post-embedding immunolabeling procedure. Ultrathin sections of London Resin (LR) White-embedded specimens were incubated with various concentrations of a commercially available antibody to NOS III and the immunoreactivity visualized by a gold-labeled secondary antibody. Analysis of ultrathin sections of the organ of Corti in the second turn of the cochlea showed that NOS III could be localized in the endothelial cells of the blood vessels under the basilar membrane, which was comparable to its location in similar cells types in various biological systems. Besides this, NOS III was also found in the cytoplasm and in the nuclei of inner and outer hair cells. Immunoreactivity was not distributed homogeneously within receptor cells. Numerous gold particles could be identified at the border of the cuticular plates, in the middle parts of the stereocilia and in the cytoplasm. Gold-labeled anti-NOS III antibodies in these sites were seen mostly on the cytoplasmic side of the submembranous cisterns in the vicinity of mitochondria and in the central parts of the hair cells, whereas the cisterns were nearly free from any immunoreactivity. NOS III was also detected in the efferent and afferent nerve endings that were located at the basal and basolateral side of the outer hair cells. Some immunoreactivity was visible in different nerve fibers of the inner and outer spiral tunnels. Besides this, gold-labeled antibodies were also present in the cuticular plate of inner and outer pillar cells, in the cytoskeletal elements located in the apical parts of Deiters cells, forming the lamina reticularis, and in the cytoskeletal-containing region of the cytoplasm of those Deiters cells located at the basal side of the outer hair cells. The role of the NOS III immunoreactivity identified in the organ of Corti was consistent with respect to hair cell and tissue modulation.  相似文献   

14.
Combined ultrastructural and immunocytochemical studies reveal that in the adolescent 12- to 17-day-old mouse the afferent tunnel crossing fibers that innervate outer hair cells receive synaptic contacts from three distinct sources: the GABAergic fibers (GABA = gamma-aminobutyric acid) of the lateral olivocochlear bundle, the non-GABAergic efferent tunnel crossing fibers, and the inner hair cells themselves. The GABAergic fibers give off collaterals that synapse with the afferent tunnel fibers as they cross the inner hair cell region. These collaterals also form synapses with afferent radial dendrites that are synaptically engaged with the inner hair cells. Vesiculated varicosities of non-GABAergic efferent tunnel fibers also synapse upon the outer spiral afferents. Most of this synaptic activity occurs within the inner pillar bundle. Distinctive for this region are synaptic aggregations in which several neuronal elements and inner hair cells are sequentially interconnected. Finally, most unexpected were the afferent ribbon synapses that inner hair cells-formed en passant on the shafts of the apparent afferent tunnel fibers. The findings indicate that: (1) the afferent tunnel (i.e., outer spiral) fibers may be postsynaptic to both the inner and the outer hair cells; (2) the non-GABAergic efferent and the afferent tunnel fibers form extensive synaptic connections before exiting the inner pillar bundle; (3) the GABAergic component of the lateral olivocochlear system modulates synaptically both radial and outer spiral afferents.  相似文献   

15.
BACKGROUND: The effect of high levels of linear acceleration (G) on the cochlea has never been studied prospectively. HYPOTHESIS: Linear acceleration at high levels has no effect on the human cochlea as demonstrated by a comparison of pre- and post-exposure measurements. METHODS: There were 22 healthy volunteers who underwent exposure to up to 9 G in a military aviation training centrifuge. Prior to exposure they were screened for cochleovestibular disorders and underwent tympanometry, audiometry and distortion product otoacoustic emissions testing (DPOAE). Immediately after exposure, they underwent serial testing of each of these parameters until they returned to baseline. RESULTS: There was no significant change in tympanometry in any subject. Audiometry revealed a temporary threshold shift of 30 db at 6 kHz in one ear of a single subject. This was accompanied by a complete loss of DPOAE at the same frequency. DPOAE did not return to baseline at 2 weeks even though the audiogram had reverted to baseline by 8 d. Four other ears displayed significant losses of emissions at single frequencies without an accompanying change on the audiogram. CONCLUSIONS: This study demonstrates that accelerative stress may cause transient injury to the cochlea. The mechanism of injury due to acceleration is probably ischemia, although a purely mechanical effect on the outer hair cells cannot be precluded. These data also reinforce a growing body of evidence that demonstrates the greater sensitivity of DPOAE over psychoacoustic testing in detecting early or subclinical cochlear damage.  相似文献   

16.
The aromatic hydrocarbon, toluene, has been reported to disrupt auditory system function both in occupational epidemiological and in laboratory animal investigations. This agent, along with several other organic solvents, impairs hearing preferentially at middle frequencies - a finding that distinguishes these agents from the traditional high frequency impairment observed with ototoxic drugs such as aminoglycoside antibiotics and cisplatin. Prior investigations performed in vivo have identified the outer hair cell as a probable target for toluene exposure. The purpose of this investigation was to determine directly whether outer hair cells isolated from the guinea pig cochlea show morphological alterations consistent with the toxic response seen in physiological studies with toluene exposure. The effect of toluene superfusion on outer hair cell shortening was assessed for cells harvested from different locations within the cochlea. Control studies included assessment of cell shortening among outer hair cells exposed to trimethyltin and cells exposed to benzene. Trimethyltin disrupts high frequency hearing preferentially and benzene does not produce hearing loss in vivo. Toluene at a concentration of 100 microM produced a marked shortening of outer hair cells although the effect was significantly greater among cells isolated from the apical half of the cochlea than from the basal half of the cochlea. By contrast, trimethyltin at the same concentration produced a preferential shortening among outer hair cells from the base of the cochlea. Benzene (100 microM) did not disrupt outer hair cell length of cells harvested from the apex. The results indicate that intrinsic features of outer hair cells contribute significantly to the site of ototoxic impairment observed in vivo for toluene.  相似文献   

17.
The results of previous research reports have led some investigators to hypothesize that frequency contribution to the infant click-evoked auditory brain-stem response (ABR) is low-frequency dominated and derived primarily from the apical cochlea. This is in contrast to latency and morphology of the adult click-evoked ABR which reflects contributions from the basal cochlea. Recent research, however, has suggested that a simple low-frequency first model of development does not adequately describe the infant auditory brain-stem response. This experiment was conducted as a carefully controlled comparison of infant and adult click-evoked ABRs restricted to narrow frequency ranges with notched-noise masking. The primary objective of this experiment was to define frequency contribution to wave I and V click-evoked ABR latency and morphology in adults and 3-month-old infants. Results indicate that 3-month-old infants have adultlike latency shifts (re: unmasked latency) when the ABR is recorded in the presence of notched-noise masking with center frequencies ranging from 500-8000 Hz. With high-frequency centered notches, latency, and morphology change are similar to the unmasked response, while low-frequency centered notches induce an average latency shift of approximately 3.5 ms for wave I and V of both infant and adult subjects. These data suggest that by 3 months of age, in normal hearing infants, ABR latency and appearance are determined by high-frequency spectral components in the broadband click which activate the basal cochlea. The adultlike pattern of latency shift observed in the ABR of these infants suggests that relatively mature tonotopic organization is established by 3 months of age.  相似文献   

18.
Surgical approaches to the inner ear with hearing preservation have valuable implications for neurotologic surgery. In a previous study in guinea pigs, we demonstrated that click-evoked auditory brain stem responses (ABRs) were preserved after transection and plugging of 1 or more semicircular canals but were lost after entering the vestibule (Smouha EE, et al. Otolaryngol Head Neck Surg 1996; 114:777-784). A limitation of that study was that click-evoked ABR might not represent the function of the entire cochlea. In this study we used tone-burst ABR to determine thresholds across a broad range of frequencies (2 to 24 kHz) before and after surgical entry into the labyrinth at the lateral semicircular canal, ampulla, and vestibule. Serial measurements were made, and a sham surgery group was used as a control. The results obtained with tone-burst ABR generally agreed with those previously obtained with click stimuli. Toneburst ABR thresholds were similar across most frequencies tested. Transection of the lateral semicircular canal resulted in preservation of ABR thresholds. Ampullectomy had a variable effect on ABR thresholds. Vestibulotomy usually resulted in substantial hearing loss. We conclude that hearing can be preserved across a range of frequencies after selective surgery of the inner ear. Surgical entry into the membranous labyrinth near the vestibule is the critical factor contributing to hearing loss after partial labyrinthectomy.  相似文献   

19.
The time course of events which are essential for nerve-fiber regeneration in the mammalian cochlea was determined using a group of chinchillas that had been exposed for 3.5 hr to an octave band of noise with a center frequency of 4 kHz and a sound pressure level of 108 dB. The animals recovered from 40 min (0 days) to 100 days at which times their inner ears were fixed and the organs of Corti prepared for phase-contrast and bright-field microscopy as plastic-embedded flat preparations. Selected areas identified in the flat preparations were semi-thick and thin sectioned at radial or tangential angles for examination by bright-field and transmission electron microscopy. The following time-ordered events appeared critical for nerve-fiber regeneration: (1) The area of the basilar membrane in which regeneration had a possibility of occurring showed signs of severe injury. Outer hair cells degenerated first followed by outer pillars, inner pillars, inner hair cells and other supporting cells; (2) Myelinated nerve fibers in the osseous spiral lamina became fragmented, starting at the distal ends of the fibers. This degeneration gradually extended back to Rosenthal's canal; (3) Fibrous processes, originating from Schwann-like cells in the osseous spiral lamina, extended laterally on the basilar membrane; (4) Schwann cells lined up medial to the habenulae perforata in the areas of severest damage, apparently ready to migrate through the habenulae onto the basilar membrane; (5) Schwann-cell nuclei appeared on the basilar membrane beneath the developing layer of squamous epithelium which was in the process of replacing the degenerated portion of the organ of Corti; (6) Regenerated nerve fibers with thin myelin sheaths or a simple investment of Schwann cell cytoplasm appeared in areas of total loss of the organ of Corti; and (7) The myelin sheaths on the regenerated nerve fibers gradually became thicker.  相似文献   

20.
The anticancer drug carboplatin has been used to generate inner hair cell (IHC) lesions in the cochlea of chinchillas. This has provided a valuable model for the study of the relative roles of IHCs and outer hair cells (OHCs). In the present study, we examined the pathological and temporal relationships between the degeneration of the cochlear IHCs and type I spiral ganglion cells (SGCs). A single intravenous dose of 200 mg/m2 carboplatin produced extensive IHC loss with no apparent effect on the OHCs. The auditory brainstem response threshold was significantly elevated by 2 weeks following treatment and remained stable through 12 weeks. Elevated thresholds were well correlated with morphological lesions. On the other hand, the SGC population progressively decreased from 2 to 12 weeks after treatment, to about half of the control density values. A positive correlation existed between the density of SGC and the number of surviving IHCs. These results indicate that selective damage to IHCs causes a distinct loss of SGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号