首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用快淬工艺制备了La-Mg-Ni-Cu系Mg_2Ni型Mg_(24)Ni_(10)Cu_2和(Mg_(24)Ni_(10)Cu_2)_(85)La_(15)合金,用XRD及HRTEM分析了铸态及快淬态合金的结构;用全自动Sieverts设备测试了合金的气态吸放氢动力学;用差热分析仪测试了不同加热速率下合金的放氢DSC曲线,并用Kissinger方程计算了合金放氢激活能。结果表明:不含La的铸态合金具有Mg_2Ni单相结构,添加La的合金除含有Mg_2Ni相外,还含有第二相La_2Mg_(17)和LaMg_3相。快淬态合金具有纳米晶、非晶结构。La的加入显著地提高了合金在真空快淬过程中的非晶形成能力。真空快淬后合金的气态吸放氢动力学得到明显改善,这主要归因于纳米晶结构的形成和合金激活能的降低。  相似文献   

2.
采用新型夹层覆盖方法制备多层镁镍合金/镍钛合金/纯金属镁锭(Mg_2Ni/NiTi/Mg)烧结载体。此材料载体具有连续扩散层,大表面积和多孔的层状晶体结构,通过制备新的吸氢相镁镍合金(Mg_2Ni)和催化相镍钛合金(NiTi)提供强有力的化学通道来改善新型烧结体的吸放氢性能;结合晶体结构对储氢性能的优化进行详细讨论;建立最优化的可有效吸放氢的实验条件。在16min内,最大吸氢量达到5.3%(wt,质量分数,下同),最大放氢量达到2.0%,从而实现了储氢容量大、速度快目标,克服了以往传统方法易引起的容易粉化、不便活化的弊端。  相似文献   

3.
首先采用化学还原法制备了CoZnB非晶合金,随后用机械球磨法将其引入到稀土基合金La_(0.7) Mg_(0.3)Ni_(3.5)中制备成复合物,考察了CoZnB的添加量对La_(0.7) Mg_(0.3)Ni_(3.5)合金电化学性能的影响。实验结果表明,加入CoZnB非晶合金后,复合物合金电极首次放电即可达到最大放电容量,高倍率放电性能得到了显著改善,电荷转移阻抗和极限电流密度均高于La_(0.7) Mg_(0.3)Ni_(3.5)合金电极。复合物合金电极La_(0.7) Mg_(0.3)Ni_(3.5)-CoZnB(质量比1∶1)的最大放电容量高达487.5mAh/g,800mA/g放电电流密度下的复合物合金电极La_(0.7) Mg_(0.3)Ni_(3.5)-CoZnB(质量比2∶1)的高倍率放电性能(HRD)可达94.8%。  相似文献   

4.
设计并制备含有长周期堆垛有序结构(LPSO)的Mg_(94)Cu_4Y_2储氢合金,研究了合金在吸放氢过程中组织的转变机制以及吸放氢动力学性能。结果表明,Mg_(94)Cu_4Y_2合金主要由Mg、Mg2Cu和高度固溶Cu、Y元素的含18R及14H型的LPSO组成。LPSO在首次吸氢过程中分解,并原位生成均匀的(MgH_2+MgCu_2+YH_3)纳米复合组织。在随后的脱氢和吸放氢循环中,合金主要通过Mg/MgH_2反应实现吸放氢。细小均匀分布的Mg2Cu和YH_2对Mg/MgH_2的催化作用,使该合金表现出较优良的吸放氢动力学特性。  相似文献   

5.
为了探索新型聚合物双键加氢催化材料,采用XRD和自制吸氢装置等对贮氢合金MlNi5-x(CoMnAl)x的组成、吸放氢性能及其催化加氢活性等进行了研究.MlNi5-x(CoMnAl)x的P-C-T曲线表明,合金具有较低的平台压力,稳定性好;对比合金表面处理前后的吸氢动力学曲线发现:MlNi5-X(CoMnAl)x吸氢初期速度较快,后期则随时间延长吸氢量缓慢增加,而经过[6M KOH+1%KBH4]处理或Pd修饰后则可迅速达到吸氢平衡.催化聚合物双键加氢性能研究表明,未处理合金对NBR溶液加氢氢化度为零,经过[6M KOH+1%KBH4]处理和钯修饰后的合金可对NBR、SBS、NR等聚合物双键加氢,氢化度分别为33.5%、32.3%、31.1%.说明合金表面组成及结构对其吸放氢性能和催化活性均有明显影响.  相似文献   

6.
研究了元素Y(钇)对La_(1-x)Y_xNi_(4.8)Mn_(0.2)(x=0.6,0.7,0.8)合金储氢性能的影响,结果表明:La_(1-x)Y_xNi_(4.8)Mn_(0.2)合金为CaCu_5型六方结构;随着Y含量的增加,晶格参数a和晶胞体积V减小,而c几乎不变,c/a线性增大;随着Y含量的增加,合金的吸放氢平台压显著升高,吸氢量减少,吸放氢平台斜率S和滞后系数_f略有增加,滞后系数H_f与XRD(111)峰的半高宽(FWHM)值的变化有着很好的对应关系,抗粉化性能提高。当Y含量x=0.8时,合金的吸放氢动力学综合性能最好。  相似文献   

7.
采用热处理工艺并结合机械合金化制备Mg-Al合金,研究过渡金属氟化物(TiF_3、VF_4以及ZrF_4)的添加对Mg-Al合金储氢性能的影响。研究发现,所有合金均主要由Mg_(17)Al_(12)相组成,Mg_(17)Al_(12)的氢化产物为MgH_2和Al,在过渡金属氟化物的催化作用下,Mg-Al合金的综合储氢性能得到明显提高。Mg-Al合金的初始吸/放氢温度约为180和300℃,添加TiF_3、VF_4以及ZrF_4后,合金的初始吸氢温度分别下降了80,30和30℃,初始放氢温度则分别下降了80,80和25℃,其中TiF_3显示出了良好的催化性能,尤其是在Mg-Al合金添加TiF_3后,Mg-Al合金氢化物的吸氢反应焓和脱氢反应焓从59.9和84.2 kJ/mol分别下降到了到了45.8和55.4 kJ/mol。  相似文献   

8.
利用沉淀法制备纳米CuO,通过不同煅烧温度控制其晶粒尺寸。XRD测试表明,所得样品为CuO单相结构,晶粒尺寸分别为7.5,14.4nm和23.4nm。利用球磨法制备Mg_2Ni-Ni-5%(摩尔分数,下同)CuO复合材料,对材料的电化学性能、动力学性能及气态放氢活化能进行测试分析。结果表明,添加纳米CuO可明显提高材料的最大放电性能,改善Mg基复合材料电极表面的电催化活性,提高材料体相内H的扩散能力。DSC测试表明,纳米CuO复合材料比无催化剂材料的放氢温度降低约50K。通过Kissinger公式计算得到Mg_2Ni-Ni和Mg_2Ni-Ni-5%CuO600复合材料的放氢活化能分别为86.9kJ/mol和89.3kJ/mol。  相似文献   

9.
在实际NdFeB氢爆的温度和压力范围内,对NdFeB氢爆时的吸氢量进行了理论计算.计算表明Mkg成分为NdxFeyBz(质量分数,%)的NdFeB合金在温度为TK,体积为Vm3的容器内氢爆时,其完全氢爆时的吸氢量为△p=1.06×10-2(x-82y-293z+7274)MT/VPa.氢爆实验过程中的吸氢量与此理论计算结果能很好地符合.因此,NdFeB在氢爆过程中完全可以预先通过理论计算对充入的H2量进行定量控制.  相似文献   

10.
镁基Mg_2Ni储氢合金由于具有理论储氢容量高、资源丰富、价格廉价、质量轻等突出优点而备受关注。然而,该类合金因制备困难、吸放氢动力学性能差,实际应用受到了极大的限制。对近几十年来镁基Mg_2Ni储氢合金的制备和性能改善方面的研究进行了系统综述。在此基础上,指出了该类合金存在的问题及今后的发展方向。  相似文献   

11.
利用PCT测试仪和X射线衍射及场发射扫描电镜等测试手段对NaAlH4 2%(摩尔分数)M(M=Ni、LaCl3、Ce(SO4)2)的吸放氢性能和微观结构进行了研究.结果表明,催化剂的掺杂均可降低NaAlH4的放氢温度,催化剂的催化效果依次为:Ce(SO4)2>LaCl3>Ni.掺杂稀土化合物可改善NaAlH4的吸氢性能,使第一步吸氢反应:3NaH Al (3)/(2)H2Na3AlH6完全发生,特别是Ce(SO4)2的掺杂,使样品发生了部分(1)/(3)Na3AlH6 (2)/(3)Al H2NaAlH4的第二步吸氢反应,吸氢量达到2.808%(质量分数).掺杂Ce(SO4)2有利于NaAlH4 在球磨过程中颗粒尺寸细化,颗粒的细化增强了NaAlH4的活性,导致其吸放氢性能提高.  相似文献   

12.
微孔结构与表面改性对活性炭吸附储氢能力的影响   总被引:11,自引:0,他引:11  
研究了椰壳基活性炭微孔结构和化学改性对其储氢能力的影响。结果表明,物理活化的椰壳基活性炭用HF或NH3.H2O处理后可提高活性炭的吸氢能力,用HNO3处理后吸氢能力几乎没有什么变化,而用H3PO4处理后吸氢能力却有明显的下降。活性炭的比表面积、孔径分布和表面性质都会影响其吸附氢气的能力,其中,比表面积是最主要的影响因素。  相似文献   

13.
借助X-ray及吸放氢性能测试装置研究了不同处理条件及元素替代对非化学计量比La(NiMMn)5.6合金(M=Sn,Al,Cu)的结构、活化性能、吸氢容量和平台压力等性能的影响,测试了不同温度下合金的PCT曲线.结果表明,无论退火处理、快速凝固、以及Sn,Cu,Al元素取代,合金都出现点阵常数a缩短,c伸长,单胞体积增大.与常规熔铸相比,退火处理和快速凝固均提高了合金的活化性能,且都大大提高了合金的贮氢性能和降低平台压,但快速凝固吸氢量有所降低;快速凝固+低温退火合金的吸氢量最大.分别以Sn,Cu,Al取代Ni,元素替代的La(NiMMn)5.6合金都降低了合金的平台压,平台压降低的顺序按Sn>Al>Cu而减少,且都大大减小了滞后.  相似文献   

14.
采用固相合成法制备了La_(0.8)Sr_(0.2)(Ga_(0.8)Mg_(0.2))_(0.1)Fe_(0.9)O_(3-δ)(LSGMF)混合导体和La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM)固体电解质,利用XRD、TGA、范德堡直流四探针法和热膨胀仪等对试样进行了分析。以LSGMF为致密扩散障碍层,以LSGM为氧泵层,采用共压共烧结法制备了极限电流型氧传感器,利用SEM和EDS对LSGMF/LSGM陶瓷体横截面的微观形貌和成分进行了分析。结果表明:LSGMF具有菱方钙钛矿结构(R-3c空间群),它在650℃失重速率最快,其电导率随温度的升高而增大;300~1000℃范围,LSGM与LSGMF的热膨胀系数分别为12.51×10~(–6)/℃和12.80×10~(–6)/℃。650~850℃范围,氧传感器具有良好的极限电流平台,lg I_L(极限电流I_L)与1000/T呈线性关系,LSGMF中氧离子的扩散激活能为0.4008 e V。800℃、0.3mol%x(O_2)21.0mol%时,极限电流IL与氧含量x(O_2)间的关系为:I_L(m A)=10.285x(O_2)(mol%),R=0.9982。LSGMF和LSGM结合牢固,未产生裂纹,EDS分析基本符合各化合物的化学计量比。  相似文献   

15.
为提高La-Mg-Ni基储氢合金La_(0.73)Ce_(0.18)Mg_(0.09)Ni_(3.20)Al_(0.21)Mn_(0.10)Co_(0.60)的电化学性能,合成四羧基酞菁钴对其进行表面处理。表面处理后,电极最大放电容量略有下降,但电极的循环稳定性和动力学性能提高。研究结果表明,添加2%四羧基酞菁钴制得的电极的电化学性能最佳,最大放电容量达到363mA·h/g,第50次循环时的放电容量为272mA·h/g,50次循环后的放电容量保持率为75%极限,电流密度为1359mA/g。添加四羧基酞菁钴后改善了储氢合金的综合电化学性能。  相似文献   

16.
本研究通过优化实验获得高长径比的Mg_2B_2O_5纳米线,研究了其对环氧树脂的增强作用。采用水热法和热处理两步法制备了Mg_2B_2O_5纳米线并通过控制Mg_2B_2O_5纳米线添加量调节环氧树脂的弯曲性能。Mg_2B_2O_5纳米线的形貌与前驱体MgBO_2(OH)形貌密切相关。水热法制备MgBO_2(OH)纳米线需要一定的浓度和较高的反应温度,延长反应时间有利于提高长径比。另外,适当的添加Mg_2B_2O_5纳米线可以明显提升环氧树脂的弯曲性能。  相似文献   

17.
储氢合金被认为是一种良好的储氢介质其循环过程中的高吸放氢量更是学者们的研究重点。但储氢合金中的储氢容量不可避免会发生衰减其衰减机理主要有:合金颗粒粉化、电化学腐蚀与氧化以及氢致非晶化(HIA)。其中,HIA发生于含Lave相的AB_2型合金氢化物或Lave相为子单元的AB_(3~3.8)型稀土镍系合金氢化物中。影响HIA发生的因素主要有氢浓度、氢压力、温度、循环次数、物相类型。当氢浓度较低时,合金吸氢发生部分HIA;随着氢浓度的增加,氢化物发生HIA程度严重。HIA发生与氢压、温度的临界值有关,高于临界值时,HIA现象严重,低于临界值时,非晶与晶态氢化物共存。随着循环次数的增加,HIA现象严重,这直接降低了合金的放氢效率。有研究者指出,可通过调整物相改善合金的吸放氢性能。采用Mg、Pr、Sm和Co、Mn、Cu、Fe、Al分别部分替代RENi_2(RE=稀土)合金中RE和Ni,虽然形成的合金吸氢时仍会发生HIA,但其吸放氢性能得到显著改善。这是因为经调整的合金由单一的AB_2型Laves相转变为AB_2型Laves相和CaCu_5型AB_5相混合物相AB_2相吸氢时会发生HIA,而AB_5相则始终为晶态不发生HIA。随着循环次数的增加,Fe、Mn、Si等元素部分替代Ni后合金发生HIA的速率不同。AB_2或含AB_2子单元的物相吸氢发生HIA由易到难的顺序为(La,Mg) Ni_2(La,Mg) Ni_3(La,Mg)_2Ni_7(La,Mg)_5Ni_(19)。为了延缓或抑制HIA的发生,可以从适量合金元素替代、增大AB_5结构层比例或含量、合金氢化物的再结晶等角度进行研究。本文归纳了AB_2型或含AB_2相子单元的合金吸氢发生HIA的研究进展,分别对发生HIA的必要条件、影响因素、现象与原因等进行了介绍提出了HIA的延缓措施并展望了其应用前景,以期为研制出长寿命、高容量的储氢合金提供参考。  相似文献   

18.
表面氧污染的钛膜,其吸氢能力比清洁钛膜降低达数倍之多。在厚度d为40nm,表面氧污染的钛膜表面上,重新蒸镀一层极薄的(约1.2nm)清洁钛膜,吸氢、释氢的测量表明其吸氢能力得到恢复。另外,还对其他四块不同厚度的钛膜,在表面清洁及氧污染的条件下,分别进行了吸氢能力实验。实验结果证实:氧污染降低钛膜吸氢能力的原因是使钛膜上氢分子解离的位置减少,而不是扩散阻挡层的作用。  相似文献   

19.
低温绝热气瓶普遍采用高真空多层绝热,其夹层真空随着时间会缓慢变坏,氢气是造成真空下降的主要原因,而现在的吸氢剂氧化钯(PdO)价格昂贵单位吸氢量较小。因此本文搭建实验平台,研究由氧化铜(CuO)和5 A分子筛(5 A)组成的新型廉价复合吸氢剂的吸附性能。研究结果表明:复合吸氢剂的最优质量比例为1∶6.2,测定了在此比例下的复合吸氢剂的吸附等温线,根据BDDT理论,该等温线属于第Ⅰ类吸附等温线,并用Langmuir等温式进行了分析,得出饱和吸附量为560.97 mL(stp)/g(CuO),吸附系数为2.69。  相似文献   

20.
利用等离子体喷涂技术和弥散增强粉末冶金方法制备钨基面对等离子体材料,并对其基本物理属性进行了分析,包括气孔率及其分布、硬度、抗弯强度、结合强度。同时,利用电子束实验装置对钨基复合材料高热负荷性能进行了研究。研究发现,VPS-W涂层能够承受10MW/m~2、100s的热负荷沉积,涂层开裂、分层是其失效原因;TiC和La_2O_3弥散相增强了钨基复合材料性能,在表面温度控制在1500℃以下可作为面对等离子体材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号