首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Activation of gamma-aminobutyric acid-B (GABAB) receptors during N-methyl-D-aspartate (NMDA)-induced fictive locomotor activity in the lamprey spinal cord reduces the burst frequency and changes the intersegmental coordination. Presynaptic inhibition of both the excitatory and inhibitory synaptic transmission from spinal premotor interneurons occurs through GABAB receptor activation. To further analyze the cellular mechanisms underlying the GABABergic modulation of the locomotor network, the present study investigates somatodendritic effects of GABAB receptor activation on interneurons and motoneurons in the lamprey spinal cord in vitro using single-electrode current- and voltage-clamp techniques. 2. High- (HVA) and low- (LVA) voltage-activated calcium currents were studied with single-electrode voltage clamp when Na+ and K+ currents were blocked--using tetrodotoxin, tetraethylammonium (TEA), and CsCl electrodes--after substituting Ca2+ with Ba2+. Cobalt-sensitive inward barium currents, activated at -50 mV, became larger when the holding potential was set to a more hyperpolarized level, thus suggesting the existence of an LVA calcium current. The presence of cobalt-sensitive inward barium currents activated at -30 and -10 mV suggests the existence of an HVA calcium current. GABAB receptor activation (baclofen) reduced the peak amplitude of both the LVA and HVA Ca2+ component. 3. The late phase of the afterhyperpolarization (AHP), which follows the action potential, was reduced in amplitude by cobalt, thus lending further support to the notion that the Ca2+ influx, and the subsequent activation of Ca(2+)-dependent K+ channels (KCa2+), constitutes the major part of the AHP generation. Application of the GABAB agonist baclofen also reduced the peak amplitude of the AHP in interneurons and motoneurons, and this reduction was counteracted by the GABAB antagonist 2(OH)saclofen. Baclofen reduced the duration of action potentials broadened by TEA, thus suggesting that the Ca2+ inflow was reduced. Intracellular injection of the GTP analogue GTP gamma S also reduced the duration of the action potential and the peak amplitude of the AHP in TEA, thus supporting the notion that a GTP-binding protein (G-protein)-mediated GABAB receptor activation reduced the calcium inflow, leading to less activation of KCa channels and, consequently, to a smaller peak amplitude of the AHP. 4. Baclofen suppressed the subthreshold depolarization induced by a depolarizing current pulse injection without affecting either the spike threshold or the resting membrane conductance.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Lamprey spinal neurons exhibit a fast afterhyperpolarization and a late afterhyperpolarization (AHP) which is due to the activation of apamin-sensitive SK Ca2+-dependent K+ channels (KCa) activated by calcium influx through voltage-dependent channels during the action potential (Hill et al. 1992, Neuroreport, 3, 943-945). In this study we have investigated which calcium channel subtypes are responsible for the activation of the KCa channels underlying the AHP. The effects of applying specific calcium channel blockers and agonists were analysed with regard to their effects on the AHP. Blockade of N-type calcium channels by omega-conotoxin GVIA resulted in a significant decrease in the amplitude of the AHP by 76.2+/-14.9% (mean +/- SD). Application of the P/Q-type calcium channel blocker omega-agatoxin IVA reduced the amplitude of the AHP by 20.3+/-10.4%. The amplitude of the AHP was unchanged during application of the L-type calcium channel antagonist nimodipine or the agonist (+/-)-BAY K 8644, as was the compound afterhyperpolarization after a train of 10 spikes at 100 Hz. The effects of calcium channel blockers were also tested on the spike frequency adaptation during a train of action potentials induced by a 100-200 ms depolarizing pulse. The N- and P/Q-type calcium channel antagonists decreased the spike frequency adaptation, whereas blockade of L-type channels had no effect. Thus in lamprey spinal cord motor- and interneurons, apamin-sensitive KCa channels underlying the AHP are activated primarily by calcium entering through N-type channels, and to a lesser extent through P/Q-type channels.  相似文献   

3.
Ca2+ channels diversity of cultured rat embryo motoneurons was investigated with whole-cell current recordings. In 5-20 mM Ba2+, the whole-cell currents were separated in low- (LVA) and high-voltage-activated (HVA) current. The LVA current was evident since the first day in culture, while the HVA component was small and increased with time. Recordings after 4 days revealed approximately 20% L-, approximately 45% N- and approximately 35% P- and R-type currents. P-type currents were revealed only in 40% of motoneurons, in which 20-200 nM omega-Aga-IVA caused 20% irreversible block of total current. The remaining 60% of cells were insensitive even to higher doses of the toxin (500 nM in 5 mM Ba2+), suggesting weak expression and heterogeneous distribution of P-type channels compensated by high densities of HVA Ca2+ channels resistant to all the antagonists (R-type). A significant residual current could also be resolved after prolonged applications of 5 microM omega-CTx-MVIIC, which allowed separation of N- and P-type currents by the distinct onset of toxin block. The antagonists-resistant current reveals biophysical characteristics typical of HVA channels, but distinct from the alphaE channel. The current activates around -20 mV in 20 mM Ba2+; inactivates slowly and independently of Ca2+; is blocked by low [Cd2+] and high [Ni2+]; and is larger with Ba2+ than Ca2+. The uncovered R-type calcium current can account for part of the presynaptic Ca2+ current controlling neurotransmitter release at the mammalian neuromuscular junction whose activity is resistant to DHP-and omega-CTx-GVIA, and displays anomalous sensitivity to omega-Aga-IVA and omega-CTx-MVIIC.  相似文献   

4.
The contributions made by low- (LVA) and high-voltage-activated (HVA) calcium currents to afterhyperpolarizations (AHPs) of nucleus basalis (NB) cholinergic neurons were investigated in dissociated cells. Neurons with somata >25 microM were studied because 80% of them stained positively for choline acetyltransferase and had electrophysiological characteristics identical to those of cholinergic NB neurons previously recorded in basal forebrain slices. Calcium currents of cholinergic NB neurons first were dissected pharmacologically into an amiloride-sensitive LVA and at least five subtypes of HVA currents. Approximately 17% of the total HVA current was sensitive to nifedipine (3 microM), 35% to omega-conotoxin-GVIA (200-400 nM), 10% to omega-Agatoxin-IVA (100 nM), and 20% to omega-Agatoxin-IVA (300-500 nM), suggesting the presence of L-, N-, P-, and Q-type channels, respectively. A remaining current (R-type) resistant to these antagonists was blocked by cadmium (100-200 microM). We then assessed pharmacologically the role that LVA and HVA currents had in activating the apamin-insensitive AHP elicited by a long train of action potentials (sAHP) and the AHP evoked either by a short burst of action potentials or by a single action potential (mAHP) that is known to be apamin-sensitive. During sAHPs, approximately 60% of the hyperpolarization was activated by calcium flowing through N-type channels and approximately 20% through P-type channels, whereas T-, L-, and Q-type channels were not involved significantly. In contrast, during mAHPs, N- and T-type channels played key roles (approximately 60 and 30%, respectively), whereas L-, P-, and Q-type channels were not implicated significantly. It is concluded that in cholinergic NB neurons various subtypes of calcium channels can differentially activate the apamin-sensitive mAHP and the apamin-insensitive sAHP.  相似文献   

5.
The actions of the novel calcium (Ca2+) channel antagonist mibefradil (Ro 40-5967), a selective T-type channel blocker in myocardium, were investigated in embryonic rat spinal motoneurones maintained in culture. Whole-cell currents were recorded with the patch-clamp technique. Motoneurones displayed transient, low-voltage-activated (LVA) and, more sustained, high-voltage-activated (HVA) Ca2+ currents. The LVA currents were small and preferentially blocked by amiloride and low doses of nickel. Most of the HVA Ca2+ current flowed through N-type Ca2+ channels, while L-, and P/Q-type channels represented a smaller fraction. Mibefradil caused a rapid and reversible dose-dependent block of inward Ca2+ channel currents. Inhibition was nearly complete at 10 microM, suggesting mibefradil blockade of all subclasses of Ca2+ channels. The IC50 was approximately 1.4 microM on currents measured at 0 mV, from a holding potential of -90 mV. Inhibition of LVA Ca2+ current occurred over the same contraction range. Slow tail currents induced by the dihydropyridine agonist Bay K 8644 were also blocked by mibefradil, although with a slightly lower potency (IC50 = 3.4 microM). These broad inhibitory effects of mibefradil on Ca2+ influx were also supported by the strong inhibition of depolarization-induced intracellular calcium transients, measured from Indo-1 loaded motoneurones imaged with confocal microscopy. We conclude that mibefradil has potent blocking effects on Ca2+ channels in mammalian motoneurones. We hypothesize that therapeutic and pharmacological effects of mibefradil may involve actions on Ca2+ channels other than type T.  相似文献   

6.
Many neurons of spinal laminae I and II, a region concerned with pain and other somatosensory mechanisms, display frequent miniature "spontaneous" EPSCs (mEPSCs). In a number of instances, mEPSCs occur often enough to influence neuronal excitability. To compare generation of mEPSCs to EPSCs evoked by dorsal root stimulation (DR-EPSCs), various agents affecting neuronal activity and Ca2+ channels were applied to in vitro slice preparations of rodent spinal cord during tight-seal, whole-cell, voltage-clamp recordings from laminae I and II neurons. The AMPA/kainate glutamate receptor antagonist CNQX (10-20 microM) regularly abolished DR-EPSCs. In many neurons CNQX also eliminated mEPSCs; however, in a number of cases a proportion of the mEPSCs were resistant to CNQX suggesting that in these instances different mediators or receptors were also involved. Cd2+ (10-50 microM) blocked evoked EPSCs without suppressing mEPSC occurrence. In contrast, Ni2+ (相似文献   

7.
Voltage-gated calcium channels can be classified into high voltage activated (HVA) and low voltage activated (LVA or T-type) subtypes. The molecular diversity of HVA channels primarily results from different genes encoding their pore-forming alpha1 subunits. These channels share a common structure with an alpha1 subunit associated with at least two regulatory subunits (beta, alpha2-delta). Any of the six alpha1-related channels identified to date are regulated in their functional properties through an interaction with the ancillary beta-subunit. By contrast, the diversity and the molecular identity of LVA or T-type calcium channels have yet to be defined. Whether LVA channels are modulated by a beta-subunit, like HVA channels, is unknown. To address this issue, we have used an antisense strategy to inhibit beta-subunit expression in the NG 108-15 neuroblastoma cell line. Differentiated NG 108-15 cells express both LVA and HVA channels. We found that LVA currents were unaffected when cells were incubated with beta-antisense, while HVA currents were drastically decreased. Since LVA Ca channel currents in NG 108-15 cells are not regulated by beta-subunits, it is reasonable to postulate that the pore-forming subunit(s) of these channels lacks an interaction domain with a beta-subunit (AID). This molecular feature, which is common to various T-type channels, indicates further that LVA calcium channels belong to a channel family structurally distant from HVA channels.  相似文献   

8.
Molluscan neurons and muscle cells express transient (T-type like) and sustained LVA calcium channels, as well as transient and sustained HVA channels. In addition weakly voltage sensitive calcium channels are observed. In a number of cases toxin or dihydropyridine sensitivity justifies classification of the HVA currents in L, N or P-type categories. In many cases, however, pharmacological characterization is still preliminary. Characterization of novel toxins from molluscivorous Conus snails may facilitate classification of molluscan calcium channels. Molluscan preparations have been very useful to study calcium dependent inactivation of calcium channels. Proposed mechanisms explain calcium dependent inactivation through direct interaction of Ca2+ with the channel, through dephosphorylation by calcium dependent phosphatases or through calcium dependent disruption of connections with the cytoskeleton. Transmitter modulation operating through various second messenger mediated pathways is well documented. In general, phosphorylation through PKA, cGMP dependent PK or PKC facilitates the calcium channels, while putative direct G-protein action inhibits the channels. Ca2+ and cGMP may inhibit the channels through activation of phosphodiesterases or phosphatases. Detailed evidence has been provided on the role of sustained LVA channels in pacemaking and the generation of firing patterns, and on the role of HVA channels in the dynamic changes in action potentials during spiking, the regulation of the release of transmitters and hormones, and the regulation of growth cone behavior and neurite outgrowth. The accessibility of molluscan preparations (e.g. the squid giant synapse for excitation release studies, Helisoma B5 neuron for neurite and synapse formation) and the large body of knowledge on electrophysiological properties and functional connections of identified molluscan neurons (e.g. sensory neurons, R15, egg laying hormone producing cells, etc.) creates valuable opportunities to increase the insight into the functional roles of calcium channels.  相似文献   

9.
The requirement of postsynaptic calcium influx via L-type channels for the induction of long-term potentiation (LTP) of mossy fiber input to CA3 pyramidal neurons was tested for two different patterns of stimulation. Two types of LTP-inducing stimuli were used based on the suggestion that one of them, brief high-frequency stimulation (B-HFS), induces LTP postsynaptically, whereas the other pattern, long high-frequency stimulation (L-HFS), induces mossy fiber LTP presynaptically. To test whether or not calcium influx into CA3 pyramidal neurons is necessary for LTP induced by either pattern of stimulation, nimodipine, a L-type calcium channel antagonist, was added during stimulation. In these experiments nimodipine blocked the induction of mossy fiber LTP when B-HFS was given [34 +/- 5% (mean +/- SE) increase in control versus 7 +/- 4% in nimodipine, P < 0.003]; in contrast, nimodipine did not block the induction of LTP with L-HFS (107 +/- 10% in control vs. 80 +/- 9% in nimodipine, P > 0.05). Administration of nimodipine after the induction of LTP had no effect on the expression of LTP. In addition, B- and L-HFS delivered directly to commissural/associational fibers in stratum radiatum failed to induce a N-methyl--aspartate-independent form of LTP, obviating the possibility that the presumed mossy fiber LTP resulted from potentiation of other synapses. Nimodipine had no effect on calcium transients recorded from mossy fiber presynaptic terminals evoked with the B-HFS paradigm but reduced postsynaptic calcium transients. Our results support the hypothesis that induction of mossy fiber LTP by B-HFS is mediated postsynaptically and requires entry of calcium through L-type channels into CA3 neurons.  相似文献   

10.
We investigated actions of somatostatin (Som) on voltagegated calcium channels in acutely isolated rat amygdaloid neurons. Somatostatin caused a dose-dependent inhibition of the high voltage-activated (HVA) Ca2+ current, with little or no effect on the low voltage-activated (LVA) current. Nifedipine (2-10 microM) reduced the peak current by approximately 15% without reducing inhibition of current by Som significantly, ruling out L-type channels as the target of modulation. The modulation appears to involve N- and P/Q-type calcium channels. After pretreatment with omega-conotoxin-GVIA (omega-CgTx) or omega-agatoxin-IVA, the inhibition was reduced but not abolished, whereas the combined application of both toxins nearly abolished the modulation. The Som analog BIM-23060 mimicked the effects of Som, whereas BIM-23058 had no effect, implicating Som type-2 receptors (SSTR-2). The inhibition was voltage-dependent, being minimal for small depolarizations, and was often accompanied by a slowing of the activation time course. Strong depolarizing prepulses partially relieved the inhibition and restored the time course of activation. Intracellular dialysis with GTP gamma S led to spontaneous inhibition and a slowing of the current like that with Som and occluded the effects of the peptide. Dialysis with GDP beta S also diminished the inhibition. A short preincubation with 50 microM of the alkylating agent N-ethylmaleimide (NEM) prevented the action of somatostatin. These results suggest a role for NEM-sensitive G-proteins in the Som inhibition. Application of 8-CPT-cAMP and IBMX did not mimic or prevent the effects of Som.  相似文献   

11.
The dynamics of intracellular calcium concentration ([Ca2+]i) following activation of low voltage-activated (LVA) and high voltage-activated (HVA) Ca2+ currents were studied in identified relay neurons and interneurons of the rat dorsal lateral geniculate nucleus (LGNd) in situ using Ca2+ imaging and patch-clamp techniques. In relay neurons, [Ca2+]i transients associated with the LVA Ca2+ current showed a fairly homogeneous somatodendritic distribution, whereas HVA transients significantly decreased to 65% of the somatic value at 60 microns dendritic distance. In interneurons, LVA transients significantly increased to 239% of the somatic value at 60 microns dendritic distance, whereas HVA transients were not significantly different in the soma and dendrites. These results indicate differences in [Ca2+]i dynamics, which may reflect a heterogeneous distribution of Ca2+ channels contributing to subcellular compartmentation in the two types of thalamic neurons.  相似文献   

12.
We investigated the development of a low (T-type) and two high voltage-activated (N- and L-type) calcium channel currents in large diameter dorsal root ganglion neurones acutely isolated from embryonic mice using the whole-cell patch-clamp technique. The low and high voltage-activated barium currents (LVA and HVA) were identified by their distinct threshold of activation and their sensitivity to pharmacological agents, dihydropyridines and omega-conotoxin-GVIA, at embryonic day 13 (E13), E15 and E17-18, respectively, before, during and after synaptogenesis. The amplitude and density of LVA currents, measured during a -40 mV pulse from a holding potential of -100 mV, increased significantly between E13 and E15, and remained constant between E15 and E17-18. The density of global HVA current, elicited by 0 mV pulse, increased between E13 and E15/E17-18. The density of the N-type current studied by the application of omega-conotoxin-GVIA (1 microM) increased significantly between E13 and E15/E17-18. The use of the dihydropyridine nitrendipine (1 microM) revealed that the density of L-type current remained constant at each stage of development. Nevertheless, application of dihydropyridine Bay K 8644 (3 microM) demonstrated a significant slowing of the deactivation tail current between embryonic days 13 and 15, which may reflect a qualitative maturation of this class of calcium channel current. The temporal relationship between the changes in calcium channel pattern and the period of target innervation suggests possible roles of T-, N- and L-type currents during developmental key events such as natural neurone death and onset of synapse formation.  相似文献   

13.
1. This paper describes the use of calcium imaging to monitor patterns of activity in neonatal rat motoneurons retrogradely labeled with the calcium-sensitive dye, calcium green-dextran. 2. Pressure ejection of calcium green-dextran into ventral roots and into the surgically peeled ventrolateral funiculi (VLF) at the lumbar cord labeled spinal motoneurons and interneurons. The back labeled motoneurons often formed two or three discrete clusters of cells. 3. Fluorescent changes (10-20%) could be detected in labeled motoneurons after a single antidromic stimulus of the segmental ventral root. These changes progressively increased in amplitude during stimulus trains (1-5 s) at frequencies from 5 to 50 Hz, presumably reflecting a frequency-dependent increase in free intracellular calcium. 4. Stimulation of the ipsilateral VLF at the caudal lumbar level (L6), elicited frequency-dependent, synaptically induced motoneuronal discharge. Frequency-dependent fluorescent changes could be detected in calcium green-labeled motoneurons during the VLF-induced synaptic activation. 5. The spatial spread of synaptic activity among calcium green-labeled clusters of motoneurons could be resolved after dorsal root stimulation. Low-intensity stimulation of the roots produced fluorescence changes restricted to the lateral clusters of motoneurons. With increasing stimulation intensity the fluorescence change increased in the lateral cells and could spread into the medial motoneuronal group. After a single supramaximal stimulus a similar pattern was observed with activity beginning laterally and spreading medially. 6. Substantial changes in fluorescence of calcium green-labeled motoneurons were also observed during motoneuron bursting induced by bath application of the glycine receptor antagonist strychnine or the potassium channel blocker 4-aminopyridine (4-AP). 7. Our results show that membrane-impermeant fluorescent calcium indicators can be used as a tool to study the activity of specific populations of spinal neurons during execution of motor functions in the developing mammalian spinal cord. They also suggest that lateral clusters of motoneurons in the developing spinal cord of the rat are more recruitable or excitable than more medial clusters. Further understanding of these findings requires identification of these clusters.  相似文献   

14.
We studied the high-voltage-activated (HVA) calcium currents in cells isolated from the ventrobasal nucleus of the rat thalamus with the use of the whole cell patch-clamp technique. Low-voltage-activated current was inactivated by the use of long voltage steps or 100-ms prepulses to -20 mV. We used channel blocking agents to characterize the currents that make up the HVA current. The dihydropyridine (DHP) antagonist nimodipine (5 microM) reversibly blocked 33 +/- 1% (mean +/- SE), and omega-conotoxin GVIA (1 microM) irreversibly blocked 25 +/- 5%. The current resistant to DHPs and omega-conotoxin GVIA was inhibited almost completely by omega-conotoxin MVIIC (90 +/- 5% at 3-5 microM) and was partially inhibited by omega-agatoxin IVA (54 +/- 4% block at 1 microM). We conclude that there are at least four main HVA currents in thalamic neurons: N current, L current, and two omega-conotoxin MVIIC-sensitive currents that differ in their sensitivity to omega-agatoxin IVA. We also examined modulation of HVA currents by strong depolarization and by G protein activation. Long (approximately 1 s), strong depolarizations elicited large, slowly deactivating tail currents, which were sensitive to DHP antagonists. With guanosine 5'-0-(3-thiotriphosphate) (GTP-gamma-S) in the intracellular solution, brief (approximately 20 ms), strong depolarization produced a voltage-dependent facilitation of the current (44 +/- 5%), compared with cells with GTP (22 +/- 7%) or guanosine 5'-O-(2-thiodiphosphate) (7 +/- 4%). However, the HVA current was inhibited only weakly by 100 microM acetylcholine (8 +/- 4%). Effects of the gamma-aminobutyric acid-B agonist baclofen were variable (3-39% inhibition, n = 12, at 10-50 microM).  相似文献   

15.
Inhibition of calcium currents in rat colon sensory neurons by kappa- but not mu- or delta-opioids. J. Neurophysiol. 80: 3112-3119, 1998. We previously reported that kappa-, but not mu- or delta-opioid receptor agonists (ORAs) have selective, potentially useful peripheral analgesic effects in visceral pain. To evaluate one potential site and mechanism by which these effects are produced, we studied opioid effects on high-voltage activated (HVA) Ca2+ currents in identified (Di-I) pelvic nerve sensory neurons from the S1 dorsal root ganglion (DRG). Results were compared with opioid effects on cutaneous neurons from L5 or L6 DRG. Di-I-labeled DRG cells were voltage clamped (perforated whole cell patch clamp), and HVA Ca2+ currents were evoked by depolarizing 240-ms test pulses to +10 mV from a holding potential of -60 mV. Neither mu-ORAs (morphine, 10(-6 )M, n = 16; [D-Ala2, N-Me-Phe4, Gly-ol5] enkephalin, 10(-6 )M, n = 12) nor delta-ORAs ([D-Pen2, D-Pen5] enkephalin, 10(-7 )M, n = 16; SNC-80, 10(-7 )M, n = 7) affected HVA Ca2+ currents in colon sensory neurons. In contrast, the kappa-ORAs U50, 488 (10(-6 )M), bremazocine (10(-6)M), and nalBzoH (10(-6 )M) significantly attenuated HVA Ca2+ currents in colon sensory neurons; effects on cutaneous sensory neurons were variable. A nonreceptor selective concentration of naloxone (10(-5 )M) and nor-BNI (10(-6 )M), a selective kappa-opioid receptor antagonist, reversed the inhibitory effect of kappa-ORAs. In the presence of N-, P-, or Q-, but not L-type Ca2+ channel antagonists, the effect of U50,488 on HVA Ca2+ currents was significantly reduced. Pretreatment with pertussis toxin (PTX) prevented the inhibition by U50,488. These results suggest that kappa-opioid receptors are coupled to multiple HVA Ca2+ channels in colon sensory neurons by a PTX-sensitive G protein pathway. We conclude that inhibition of Ca2+ channel function likely contributes in part to the peripheral analgesic action of kappa-ORAs in visceral nociception.  相似文献   

16.
High threshold voltage-dependent P- and Q-type calcium channels are involved in neurotransmitter release. In order to investigate the role of P- and Q-type calcium channels in the mechanosensory (nociceptive) processing in the spinal cord, their participation in the responses of spinal wide-dynamic-range neurons to innocuous and noxious mechanical stimulation of the knee and ankle joints was studied in 30 anaesthetized rats. The knee was either normal or acutely inflamed by kaolin/carrageenan. During the topical application of omega-agatoxin IVA (P-type channel antagonist, 0.1 microM) onto the dorsal surface of the spinal cord, the responses to innocuous and noxious pressure applied to the normal knee were increased to respectively 124 +/- 42% and 114 +/- 23% of predrug values (mean +/- SD, P < 0.05, 14 neurons). By contrast, in rats with an inflamed knee, the responses to innocuous and noxious pressure applied to the knee were reduced to respectively 72 +/- 19 and 73 +/- 22% of baseline (mean +/- SD, P < 0.01, 13 neurons). In the same neurons, omega-agatoxin IVA slightly increased the responses to pressure on the non-inflamed ankle whether the knee was normal or inflamed. Thus P-type calcium channels seem to acquire a predominant importance in the excitation of spinal cord neurons by mechanosensory input from inflamed tissue and hence in the generation of inflammatory pain. By contrast, the Q-type channel antagonist, omega-conotoxin MVIIC (1 or 100 microM), had no significant effect upon responses to innocuous or noxious pressure applied to either normal or inflamed knees (25 neurons).  相似文献   

17.
A variety of voltage-dependent calcium conductances are known to control neuronal excitability by boosting peripheral synaptic potentials and by shaping neuronal firing patterns. The existence and functional significance of a differential expression of low- and high-voltage activated (LVA and HVA, respectively) calcium currents in subpopulations of neurons, acutely isolated from different layers of the guinea pig piriform cortex, were investigated with the whole cell variant of the patch-clamp technique. Calcium currents were recorded from pyramidal and multipolar neurons dissociated from layers II, III, and IV. Average membrane capacitance was larger in layer IV cells [13.1 +/- 6.2 (SD) pF] than in neurons from layers II and III (8.6 +/- 2.8 and 7.9 +/- 3.1 pF, respectively). Neurons from all layers showed HVA calcium currents with an activation voltage range positive to -40 mV. Neurons dissociated from layers III and IV showed an LVA calcium current with the biophysical properties of a T-type conductance. Such a current displayed the following characteristics: 1) showed maximal amplitude of 11-16 pA/pF at -30 mV, 2) inactivated rapidly with a time constant of approximately 22 ms at -30 mV, and 3) was completely steady-state inactivated at -60 mV. Only a subpopulation of layer II neurons (group 2 cells; circa 18%) displayed an LVA calcium current similar to that observed in deep layers. The general properties of layer II-group 2 cells were otherwise identical to those of group 1 neurons. The present study demonstrates that LVA calcium currents are differentially expressed in neurons acutely dissociated from distinct layers of the guinea pig piriform cortex.  相似文献   

18.
NMDA-induced intrinsic voltage oscillations depend on L-type calcium channels in spinal motoneurons of adult turtles. J. Neurophysiol. 80: 3380-3382, 1998. In a slice preparation from adult turtles, bath-applied N-methyl-D-aspartate (NMDA) induced rhythmic activity in spinal motoneurons. The underlying intrinsic oscillation in membrane potential was revealed in the presence of tetrodotoxin (TTX). NMDA-induced rhythmicity, in the presence or absence of TTX, was abolished or reduced by NMDA receptor antagonists and by three different classes of antagonists for L-type calcium channels. It is suggested that both NMDA receptor channels and L-type calcium channels contribute to NMDA-induced intrinsic oscillations in mature spinal motoneurons.  相似文献   

19.
Tottering mice inherit a recessive mutation of the calcium channel alpha1A subunit that causes ataxia, polyspike discharges, and intermittent dystonic episodes. The calcium channel alpha1A subunit gene encodes the pore-forming protein of P/Q-type voltage-dependent calcium channels and is predominantly expressed in cerebellar granule and Purkinje neurons with moderate expression in hippocampus and inferior colliculus. Because calcium misregulation likely underlies the tottering mouse phenotype, calcium channel blockers were tested for their ability to block the motor episodes. Pharmacologic agents that specifically block L-type voltage-dependent calcium channels, but not P/Q-type calcium channels, prevented the inducible dystonia of tottering mutant mice. Specifically, the dihydropyridines nimodipine, nifedipine, and nitrendipine, the benzothiazepine diltiazem, and the phenylalkylamine verapamil all prevented restraint-induced tottering mouse motor episodes. Conversely, the L-type calcium channel agonist Bay K8644 induced stereotypic tottering mouse dystonic at concentrations significantly below those required to induce seizures in control mice. In situ hybridization demonstrated that L-type calcium channel alpha1C subunit mRNA expression was up-regulated in the Purkinje cells of tottering mice. Radioligand binding with [3H]nitrendipine also revealed a significant increase in the density of L-type calcium channels in tottering mouse cerebellum. These data suggest that although a P/Q-type calcium channel mutation is the primary defect in tottering mice, L-type calcium channels may contribute to the generation of the intermittent dystonia observed in these mice. The susceptibility of L-type calcium channels to voltage-dependent facilitation may promote this abnormal motor phenotype.  相似文献   

20.
In normal larval lamprey, bilateral application of horseradish peroxidase (HRP) to the dorsal part of the anterior oral hood labeled subpopulations of trigeminal components on both sides of the brain; peripherally projecting motoneurons, medullary dorsal cells (sensory), and spinal dorsal cells (sensory), as well as centrally projecting afferents in the trigeminal descending tracts. Following unilateral crush injury of the right trigeminal root, HRP labeling of sensory and motor trigeminal components on the right side gradually increased with increasing recovery time, between 2 weeks and 12 weeks postcrush (PC). Axons of trigeminal motoneurons appeared to exhibit robust regeneration, whereas restoration of projections in the descending trigeminal tract ipsilateral to the injury was incomplete. Control experiments indicated that motor and sensory axons from the intact side of the oral hood did not sprout across the midline to the denervated side. Several results suggested that regenerated trigeminal sensory fibers made synapses with brain neurons that have direct or indirect inputs to reticulospinal (RS) neurons. Following a unilateral crush injury of the right trigeminal root, escape behavior in response to stimulation of the right side of the oral hood gradually returned to normal. Muscle recordings at various recovery times confirmed that anatomical regeneration of trigeminal sensory axons was functional. In addition, at 8 or 12 weeks PC, brief stimulation of the oral hood ipsilateral or contralateral to the crush injury elicited synaptic responses in RS neurons on either side of the brain, similar to that in normal animals. In the lamprey, compensatory mechanisms probably allow recovery of behavioral function despite incomplete regeneration of trigeminal sensory axons within the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号