首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of heat treatment in Ar-O2 and H2-H2O atmospheres on the flexural strength of hot isostatically pressed Si3N4 were investigated. Increases in room-temperature strength, to values significantly above that of the aspolished material, were observed when the Si3N4 was exposed at 1400°C to (1) H2 with water vapor pressure ( P H2O) greater than 1 × 10−4 MPa or (2) Ar with oxygen partial pressure ( P O2) of between 7 × 10−6 and 1.5 × 10−5 MPa. However, the strength of the material was degraded when the P H2O in H2 was lower than 1 × 10−4 MPa, and essentially unaffected when the P O2 in Ar was higher than 1.5 × 10−5 MPa. We suggest that the observed strength increases are the result of strength-limiting surface flaws being healed by a Y2Si2O7 layer formed during exposure.  相似文献   

2.
In this work, a bulk Nb4AlC3 ceramic was prepared by an in situ reaction/hot pressing method using Nb, Al, and C as the starting materials. The reaction path, microstructure, physical, and mechanical properties of Nb4AlC3 were systematically investigated. The thermal expansion coefficient was determined as 7.2 × 10−6 K−1 in the temperature range of 200°–1100°C. The thermal conductivity of Nb4AlC3 increased from 13.5 W·(m·K)−1 at room temperature to 21.2 W·(m·K)−1 at 1227°C, and the electrical conductivity decreased from 3.35 × 106 to 1.13 × 106Ω−1·m−1 in a temperature range of 5–300 K. Nb4AlC3 possessed a low hardness of 2.6 GPa, high flexural strength of 346 MPa, and high fracture toughness of 7.1 MPa·m1/2. Most significantly, Nb4AlC3 could retain high modulus and strength up to very high temperatures. The Young's modulus at 1580°C was 241 GPa (79% of that at room temperature), and the flexural strength could retain the ambient strength value without any degradation up to the maximum measured temperature of 1400°C.  相似文献   

3.
Polycrystalline bulk samples of Ti3SiC2 were fabricated by reactively hot-pressing Ti, graphite, and SiC powders at 40 MPa and 1600°C for 4 h. This compound has remarkable properties. Its compressive strength, measured at room temperature, was 600 MPa, and dropped to 260 MPa at 1300°C in air. Although the room-temperature failure was brittle, the high-temperature load-displacement curve shows significant plastic behavior. The oxidation is parabolic and at 1000° and 1400°C the parabolic rate constants were, respectively, 2 × 10−8 and 2 × 10−5 kg2-m−4.s−1. The activation energy for oxidation is thus =300 kJ/mol. The room-temperature electrical conductivity is 4.5 × 106Ω−1.m−1, roughly twice that of pure Ti. The thermal expansion coefficient in the temperature range 25° to 1000°C, the room-temperature thermal conductivity, and the heat capacity are respectively, 10 × 10−6°C−1, 43 W/(m.K), and 588 J/(kgK). With a hardness of 4 GPa and a Young's modulus of 320 GPa, it is relatively soft, but reasonably stiff. Furthermore, Ti3SiC2 does not appear to be susceptible to thermal shock; quenching from 1400°C into water does not affect the postquench bend strength. As significantly, this compound is as readily machinable as graphite. Scanning electron microscopy of polished and fractured surfaces leaves little doubt as to its layered nature.  相似文献   

4.
The tribological properties of Ti2SC were investigated at ambient temperatures and 550°C against Ni-based superalloys Inconel 718 (Inc718) and alumina (Al2O3) counterparts. The tests were performed using a tab-on-disk method at 1 m/s and 3N (≈0.08 MPa). At room temperature, against the superalloy, the coefficient of friction, μ, was ∼0.6, and at ∼8 × 10−4 mm3·(N·m)−1 the specific wear rate (SWRs), was high. However, against Al2O3, at ∼5 × 10−5 mm3·(N·m)−1 and ∼0.3, the SWRs and μ were significantly lower, which was presumably related to more intensive tribo-oxidation at the contact points. At 550°C, the Ti2SC/Inc718 and Al2O3 tribocouples demonstrated comparable μ's of ∼0.35–0.5 and SWRs of ∼7–8 × 10−5 mm3·(N·m)−1. At 550°C, all tribosurfaces were covered by X-ray amorphous oxide tribofilms. At present, Ti2SC is the only member of a family of the layered ternary carbides and nitrides (MAX phases) that can be used as a tribo-partner against Al2O3 in the wide temperature range from ambient to 550°C.  相似文献   

5.
Glasses with compositions Li1.2M0.2Ge1.8(PO4)3 (M = Al, Ga, Y, Gd, Dy, and La) were prepared and converted to glass-ceramics by heat treatment. The effects of the M3+ ions on the conductivity of the glasses and glass-ceramics were studied. The main phase present in the glass-ceramics was the conductive phase LiGe2(PO4)3. Al3+ and Ga3+ ions entered the LiGe2(PO4)3 structure by replacing Ge4+ ions, but lanthanide ions did not. The glass-ceramics exhibited much higher conductivity than the glasses. With increased ionic radius of the M3+ ions, the conductivity remained almost unchanged at ∼3 × 10−12 S/cm for the glasses, but it decreased from 1.5 × 10−5 to 8 × 10−9 S/cm for the glass-ceramics at room temperature. The higher conductivity for Al3+- and Ga3+-containing glass-ceramics was suggested to result from the substitutions of Al3+ and Ga3+ ions for Ge4+ ions in the LiGe2(PO4)3 structure.  相似文献   

6.
Thermal expansion of the low-temperature form of BaB2O4 (β-BaB2O4) crystal has been measured along the principal crystallographic directions over a temperature range of 9° to 874°C by means of high-temperature X-ray powder diffraction. This crystal belongs to the trigonal system and exhibits strongly anisotropic thermal expansions. The expansion along the c axis is from 12.720 to 13.214 Å (1.2720 to 1.3214 nm), whereas it is from 12.531 to 12.578 Å (1.2531 to 1.2578 nm) along the a axis. The expansions are nonlinear. The coefficients A, B , and C in the expansion formula L t = L 0(1 + At + Bt 2+ Ct 3) are given as follows: a axis, A = 1.535 × 10−7, B = 6.047 × 10−9, C = -1.261 × 10−12; c axis, A = 3.256 × 10−5, B = 1.341 × 10−8, C = -1.954 × 10−12; and cell volume V, A = 3.107 × 10−5, B = 3.406 × 10−8, C = -1.197 × 10−11. Based on α t = (d L t /d t )/ L 0, the thermal expansion coefficients are also given as a function of temperature for the crystallographic axes a , c , and cell volume V.  相似文献   

7.
Crystals of β-Ca2SiO4 (space group P 121/ n 1) were examined by high-temperature powder X-ray diffractometry to determine the change in unit-cell dimensions with temperature up to 645°C. The temperature dependence of the principal expansion coefficients (αi) found from the matrix algebra analysis was as follows: α1= 20.492 × 10−6+ 16.490 × 10−9 ( T - 25)°C−1, α2= 7.494 × 10−6+ 5.168 × 10−9( T - 25)°C−1, α3=−0.842 × 10−6− 1.497 × 10−9( T - 25)°C−1. The expansion coefficient α1, nearly along [302] was approximately 3 times α2 along the b -axis. Very small contraction (α3) occurred nearly along [     01]. The volume changes upon martensitic transformations of β↔αL' were very small, and the strain accommodation would be almost complete. This is consistent with the thermoelasticity.  相似文献   

8.
A thermogravimetric analysis/SO3 equilibrium technique has been used to show that tin dioxide (SnO2) is inert to chemical reaction with NaVO3 at 700° and 800°C under SO3 partial pressures as high as 5 × 10−2 bar (5 kPa). The results suggest that SnO2 may be potentially useful as a material for protection against molten vanadate–sulfate hot corrosion at moderate temperatures (<800°C).  相似文献   

9.
The tensile strength of LaS1.4 has been estimated by diametral stress testing at room temperature, 800 and 1300 K. Brittle, tensile-type failures were obtained at all temperatures when the crosshead speed was 2.1 × 10−3 mm/s; however, a 1300 K test at 8.5 × 10−4 mm/s produced plastic flow. The microstructure of LaS1.4 consisted of two phases with β-La2S3 comprising about 15 vol% of the structure and γ-La2S3 the remainder. Because of the limited amount of material available for testing, no correlation between microstructure and mechanical strength could be drawn.  相似文献   

10.
The thermal decomposition mechanism of synthetic Al(OH)3 (gibbsite) was studied in situ by neutron thermodiffractometry in an ambient atmosphere from room temperature to 600°C with 50°C steps. Gibbsite decomposed to yield AlO·(OH) (boehmite) and then poorly crystallized χ-Al2O3. Rietveld analysis was used to refine the cell parameters' variation of gibbsite and its thermal expansion coefficients were obtained: for the a -axis: 15±1 × 10−6 K−1, for b : 10±2 × 10−6 K−1, and for c : 17±2 × 10−6 K−1.  相似文献   

11.
The effects of oxygen partial pressure ( P o2) on the oxidation behavior and room-temperature flexural strength of sintered α-SiC were investigated. Groups of flexure bars were exposed at 1400°C to flowing Ar containing various levels of oxygen ( P o2 ranging from 7.5 × 10−7 to 1.5 × 10−4 MPa). The changes in weight, flexural strength, and surface morphology of the samples were strongly influenced by the P o2 level. When the P o2 was higher than 3 × 10−5 MPa, SiO2 was formed on the surface (i.e., passive oxidation occurred) and the strengths of the samples were not significantly affected. However, when the P o2 was lower than 2 × 10−5 MPa, material loss occurred (active oxidation), decreasing the weight and strength of the samples. Both the reduction in strength and the weight loss resulting from active oxidation were proportional to the P o2. An approximately 50% reduction in strength was observed in the SiC after oxidation for 20 h at a P o2 of 1.5 × 10−5 MPa, a level that is slightly lower than the P o2 at which the transition from active to passive oxidation occurs. Large pits formed during exposure were responsible for the reduction in strength.  相似文献   

12.
We measured the volume thermal expansion of Ti3SiC2 from 25° to 1400°C using high-temperature X-ray diffraction using a resistive heated cell. A piece of molybdenum foil with a 250 μm hole contained the sample material (Ti3SiC2+Pt). Thermal expansion of the polycrystalline sample was measured under a constant argon flow to prevent oxidation of Ti3SiC2 and the molybdenum heater. From the lattice parameters of platinum (internal standard), we calculated the temperature by using thermal expansion data published in the literature. The molar volume change of Ti3SiC2 as a function of temperature in °C is given by: V M (cm3/mol)=43.20 (2)+9.0 (5) × 10−4 T +1.8(4) × 10−7 T 2. The temperature variation of the volumetric thermal expansion coefficient is given by: αv (°C−1)=2.095 (1) × 10−5+7.700 (1) × 10−9 T . Furthermore, the results indicate that the thermal expansion anisotropy of Ti3SiC2 is quite mild in accordance with previous work.  相似文献   

13.
Monazite-type CePO4 powder (average grain size 0.3 μm) was dry-pressed to disks or bars. The green compacts began to sinter above 950°C. Relative density ≧ 99% and apparent porosity <1% were achieved when the specimens were sintered at 1500°C for 1 h in air. The linear thermal expansion coefficient and thermal conductivity of the CePO4 ceramics were 9 × 10−6/°C to 11 × 10−6/°C (200° to 1300°C) and 1.81 W/(m · K) (500°C), respectively. Bending strength of the ceramics (average grain size 4 μm) was 174 ± 28 MPa (room temperature). The CePO4 ceramics were cracked or decomposed by acidic or alkaline aqueous solutions at high temperatures.  相似文献   

14.
Crystals of SrY2O4 (space group Pnam ) were examined by high-temperature powder X-ray diffractometry to determine the changes in unit-cell dimensions with temperature. The individual cell dimensions linearly increased with increasing temperature up to 1473 K. The expansion coefficients (K−1) were 1.263(8) × 10−5 along the a- axis, 7.46(6) × 10−6 along the b- axis, and 9.93(10) × 10−6 along the c- axis. The coefficient of mean linear expansion was 1.001(8) × 10−5 K−1.  相似文献   

15.
Purified air is passed over a specimen of YBa2Cu3O7– x at 890°C; the vaporized substances are condensed in a pure alumina tube, then subjected to inductively controlled plasma analysis. Vapor pressure values of 2.5 × 10−5 Pa for BaO( g ), 1.2 × 10−4 Pa for Cu( g ), and 2.2 × 10−5 Pa for CuO( g ) are obtained under 2.1 × 104 Pa (0.21 bar) of oxygen pressure. No Y vapor is detected at this temperature.  相似文献   

16.
La0.8Sr0.2Cr0.9Ti0.1O3 perovskite has been designed as an interconnect material in high-temperature solid oxide fuel cells (SOFCs) because of its thermal expansion compatibility in both oxidizing and reducing atmospheres. La0.8Sr0.2Cr0.9Ti0.1O3 shows a single phase with a hexagonal unit cell of a = 5.459(1) Å, c = 13.507(2) Å, Z = 6 and a space group of R -3 C . Average linear thermal expansion coefficients of this material in the temperature range from 50° to 1000°C were 10.4 × 10−6/°C in air, 10.5 × 10−6/°C under a He–H2 atmosphere (oxygen partial pressure of 4 × 10−15 atm at 1000°C), and 10.9 × 10−6/°C in a H2 atmosphere (oxygen partial pressure of 4 × 10−19 atm at 1000°C). La0.8Sr0.2Cr0.9Ti0.1O3 perovskite with a linear thermal expansion in both oxidizing and reducing environments is a promising candidate material for an SOFC interconnect. However, there still remains an air-sintering problem to be solved in using this material as an SOFC interconnect.  相似文献   

17.
Highly (001)-oriented (Pb0.76Ca0.24)TiO3 (PCT) thin films were grown on Pt/Ti/SiO2/Si substrates using a sol–gel process. The PCT film with a highly (001) orientation showed well-saturated hysteresis loops at an applied field of 800 kV/cm, with remanent polarization ( P r) and coercive electric field ( E c) values of 23.6 μC/cm2 and 225 kV/cm, respectively. At 100 kHz, the dielectric constant and dielectric loss values of these films were 117 and 0.010, respectively. The leakage-current density of the PCT film was 6.15 × 10−8A/cm2 at 5 V. The pyroelectric coefficient ( p ) of the PCT film was measured using a dynamic technique. At room temperature, the p values and figures-of-merit ( F D) of the PCT film were 185 μC/m2K and 1.79 × 10−5 Pa−0.5, respectively.  相似文献   

18.
The pyroelectric properties of (1− x )Pb(Mg1/3Nb2/3)O3− x PbTiO3 (PMN− x PT) single crystals with various compositions and orientations have been investigated using a dynamic method. Excellent pyroelectric performances can be achieved in 〈111〉-oriented rhombohedral PMN− x PT (0.24≤ x ≤0.30) crystals, where the measurement direction corresponds to the polar axis of the crystal. At room temperature, the pyroelectric coefficient and the detectivity figure of merit ( F d ) for the 〈111〉-oriented PMN–0.28PT single crystal are 8.55 × 10−4 C·(m2·K)−1 and 9.89 × 10−5 Pa−1/2 (100 Hz), respectively, superior to those of the widely used pyroelectric materials. They are also weak temperature dependent and nearly independent of frequency. These outstanding pyroelectric performances make the single crystals a promising candidate for uncooled infrared detectors and thermal imagers.  相似文献   

19.
Delayed failure and creep behavior of high-purity Si3N4 sintered without additives with a mean grain size of 1 μm has been measured at 1400°C. Lifetime under 300 MPa was >240 h, which showed good agreement with the value predicted in our previous report. Creep strain rate ranged from 1 × 10−5 to 3 × 10−5 h−1 between 200 and 360 MPa. These values demonstrate the excellent potential of high-purity Si3N4 materials for structural application up to 1400°C.  相似文献   

20.
Microstructural evolution and microwave dielectric properties of liquid-phase-sintered 0.9MgTiO3–0.1CaTiO3 dielectric ceramic material have been investigated as a function of oxygen partial pressure (     ) during sintering. Sintering in a weakly reducing atmosphere (     =10−14 atm) generally increased the density, permittivity, quality factor ( Q × f ), and the temperature coefficient of resonance frequency (τf), but further reducing atmosphere down to     of 10−14 atm generally decreased Q × f and τf. When the 5 wt% lithium borosilicate glass-added specimen was sintered at 950°C and     =10−14 atm, it demonstrated a permittivity of 18.8, Q × f of 19 000 GHz, and τf of 10 × 10−6 K−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号