首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Our laboratory has demonstrated that aging in Brown-Norway rats is associated with decreased LH pulse amplitude and reduced GnRH and LH responsiveness to excitatory amino acids (EAA), presumably through the NMDA receptor (NMDAR). Nitric oxide (NO) is a neurotransmitter postulated to be involved in hypothalamic synaptic events required for normal GnRH regulation through the activation of neuronal nitric oxide synthase (nNOS). Paradoxically, excessive stimulation of nNOS by NMDAR or the expression of inducible nitric oxide synthase (iNOS) can lead to supraphysiological levels of NO acting as effector of apoptosis with resultant decreased regional neuronal function. The aims of this study were to determine: 1) whether aging in the preoptic area/medial basal hypothalamus is associated with altered NO synthesis; 2) the possible roles of the NMDAR/nNOS cascade and iNOS in this process; and 3) whether alterations in the levels of NOS isoforms are specific to this region of the brain. Brown Norway male rats (N = 5) at ages 1 (immature), 3 (adult), and 24 (old) months, were used for measuring NMDARs in hypothalamic membranes by the binding of a (3H)-NMDAR ligand. Another series of the same age groups of rats (N = 9) were used to determine by Western blot the contents of NMDAR, nNOS, and iNOS in the hypothalamus, and only iNOS in the frontal and parietal cortex, and cerebellum. NOS activity was measured in the hypothalamus by the arginine/citrulline assay. A significant decrease of NMDA analog binding was found in the hypothalamus from old rats as compared with adult (-66%) and immature animals (-57%), accompanied by a reduction in NMDAR content (-34% and -46%, respectively). NOS activity in the hypothalamus was 67% and 100% higher in old rats as compared with the other two groups, although no significant differences were observed in nNOS content. However, hypothalamic iNOS increased 3.8- and 7.6-fold in old rats, as compared with adult and immature, respectively. This increase in hypothalamic iNOS was paralleled by a rise of iNOS in other brain regions of old rats as compared respectively to adult and immature animals: 3.9- and 12.8-fold, in the frontal cortex; 2.8- and 2.5-fold, in the parietal cortex; and 3.1- and 4.8-fold, in the cerebellum. These results show that aging in this rat model is associated with high NO synthesis in the hypothalamus and other regions of the brain, which is independent of the NMDAR/nNOS cascade. We speculate that increased brain levels of iNOS may lead to neurotoxicity, which may be involved in GnRH impaired pulsatile secretion, as well as acting as a possible inducer of age associated neuronal loss in cognitive related brain areas.  相似文献   

2.
3.
The purpose of this study was to determine whether immobilization stress can cause changes in the enzyme activity and gene expression of neuronal nitric oxide synthase (nNOS) in the hypothalamus, pituitary, and adrenal gland in rats. NOS enzyme activity was measured as the rate of [3H]arginine conversion to citrulline, and the level of nNOS mRNA signal was determined using in situ hybridization and image analysis. NOS-positive cells were also visualized using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-diaphorase) histochemistry and by immunohistochemistry using an anti-nNOS antibody. A significant increase of NOS enzyme activity in the anterior pituitary, adrenal cortex, and adrenal medulla (1.5-, 3.5-, and 2.5-fold) was observed in the stressed animals (immobilization of 6 h) as compared to non-stressed control rats. Up-regulation of nNOS mRNA expression in anterior pituitary and adrenal cortex was already detectable after stress for 2 h with 1.5- and 2-fold increase, respectively. The nNOS mRNA signals in hypothalamic paraventricular nucleus (PVN) significantly increased after the stress for 6 h. This increase in NOS enzyme activity was confirmed using NADPH-diaphorase staining and immunostaining in the PVN and adrenal cortex. An increase of NOS enzyme activity in adrenal medulla after immobilization for 6 h posited by far longer than in the adrenal cortex and anterior pituitary. The present findings suggest that psychological and/or physiological stress causes NO release in hypothalamic-pituitary-adrenal (HPA) axis and in sympatho-adrenal system. It is suggested that NO may modulate a stress-induced activation of the HPA axis and the sympatho-adrenal medullary system. The different duration of stress-induced NOS activity in HPA axis and the adrenal medulla may suggest NO synthesis is controlled by separate mechanism in the two HPA and the sympatho-adrenal systems.  相似文献   

4.
The efficacy of post-ischemic treatment with AJ-3941 ((+/-)-(E)-1-(3-fluoro-6,11-dihydrodibenz[b,e]-oxepine-11-yl )-4-(3-phenyl-2- propenyl)-piperazine dimaleate, CAS 143110-70-7), a cerebrovascular selective Ca2+ channel antagonist, on brain infarction induced by focal ischemia-reperfusion in rats was evaluated. Focal ischemia was induced by transient occlusion of middle cerebral artery (MCA) with a 3-0 nylon monofilament for 90 min. One day after MCA occlusion (MCAo), brain infarct size was determined by measuring 2,3,5-triphenyltetrazonium chloride-negative stained area of the serial brain sections. The development of cerebral infarction was observed in both regions of cortex and subcortex, such as striatum, caudatum, putamen, hippocampus and corpus callosum. Post-ischemic treatment with AJ-3941 (1 or 3 mg/kg p.o., 10 min and 3 h after the occlusion) significantly reduced the infarct size and volume in the ipsilateral hemisphere in a dose-dependent manner, compared to the solvent control. The reducing effect was observed mainly in the cortical region, and a significant reduction of the subcortical infarct volume was found at the higher dose (3 mg/kg). Post-ischemic treatment with the thromboxane A2 synthetase inhibitor, sodium ozagrel (150 micrograms/kg/min i.v. infusion, between 1 h and 24 h after the MCAo) did not reduce the infarct volume in the hemisphere after ischemia-reperfusion. AJ-3941 had only minimum effect on the elevation of body temperature during ischemia-reperfusion. These results indicate that post-ischemic treatment with AJ-3941 may ameliorate the brain injury after the transient focal cerebral ischemia, and they suggest that AJ-3941 has beneficial effects for treatment of ischemic cerebral damage, such as stroke.  相似文献   

5.
OBJECT: Although nitric oxide (NO) has been shown to play an important role in the pathophysiological process of cerebral ischemia, its contribution to the pathogenesis of traumatic brain injury (TBI) remains to be clarified. The authors investigated alterations in constitutive nitric oxide synthase (NOS) activity after TBI and the histopathological response to pharmacological manipulations of NO. METHODS: Male Sprague-Dawley rats underwent moderate (1.7-2.2 atm) parasagittal fluid-percussion brain injury. Constitutive NOS activity significantly increased within the ipsilateral parietal cerebral cortex, which is the site of histopathological vulnerability, 5 minutes after TBI occurred (234.5+/-60.2% of contralateral value [mean+/-standard error of the mean ?SEM?], p < 0.05), returned to control values by 30 minutes (114.1+/-17.4%), and was reduced at 1 day after TBI (50.5+/-13.1%, p < 0.01). The reduction in constitutive NOS activity remained for up to 7 days after TBI (31.8+/-6.0% at 3 days, p < 0.05; 20.1+/-12.7% at 7 days, p < 0.01). Pretreatment with 3-bromo-7-nitroindazole (7-NI) (25 mg/kg), a relatively specific inhibitor of neuronal NOS, significantly decreased contusion volume (1.27+/-0.17 mm3 [mean+/-SEM], p < 0.05) compared with that of control (2.52+/-0.35 mm3). However, posttreatment with 7-NI or pre- or posttreatment with nitro-L-arginine-methyl ester (L-NAME) (15 mg/kg), a nonspecific inhibitor of NOS, did not affect the contusion volume compared with that of control animals (1.87+/-0.46 mm3, 2.13+/-0.43 mm3, and 2.18+/-0.53 mm3, respectively). Posttreatment with L-arginine (1.1+/-0.3 mm3, p < 0.05), but not 3-morpholino-sydnonimine (SIN-1) (2.48+/-0.37 mm3), significantly reduced the contusion volume compared with that of control animals. CONCLUSIONS: These data indicate that constitutive NOS activity is affected after moderate parasagittal fluid percussion brain injury in a time-dependent manner. Inhibition of activated neuronal NOS and/or enhanced endothelial NOS activation may represent a potential therapeutic strategy for the treatment of TBI.  相似文献   

6.
In Exp I, an .82 mg/kg dose of 4-OH amphetamine hydrobromide (AMP) administered ip immediately following training in a 1-way active avoidance task enhanced retention performance of male ARS Sprague-Dawley rats measured 24 hrs later. In contrast, AMP in a dose range of .41–2.64 mg/kg, ip, did not affect retention of a swim escape task (Exp II). The behaviorally active dose of .82 mg/kg decreased dopamine concentrations in the amygdala and hippocampus. A dose of 8.2 mg/kg administered ip to naive untrained Ss (Exp III) decreased concentrations of norepinephrine measured in the amygdala, cortex, hippocampus, hypothalamus, and midbrain; decreased concentrations of dopamine in the amygdala, cortex, hippocampus, and striatum; and significantly reduced concentrations of norepinephrine and epinephrine in the adrenal medulla. In addition, because the integrity of the adrenal medulla is necessary for the enhancing action of AMP and because AMP reduces concentrations of catecholamines in the brain and adrenal medulla, it is possible that this drug affects retention performance by a dual action on the brain and the adrenal medulla. (20 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
The possible effects of the polyamine interconversion pathway on tissue polyamine levels, brain edema formation, and ischemic injury volume were studied by using a selective irreversible inhibitor, MDL 72527, of the interconversion pathway enzyme, polyamine oxidase. In an intraluminal suture occlusion model of middle cerebral artery in spontaneously hypertensive rats, 100 mg/kg MDL 72527 changed the brain edema formation from 85.7 +/- 0.3 to 84.5 +/- 0.9% in cortex (p < 0.05) and from 79.9 +/- 1.7 to 78.4 +/- 2.0% in subcortex (difference not significant). Ischemic injury volume was reduced by 22% in the cortex (p < 0.05) and 17% in the subcortex (p < 0.05) after inhibition of polyamine oxidase by MDL 72527. There was an increase in tissue putrescine levels together with a decrease in spermine and spermidine levels at the ischemic site compared with the nonischemic site after ischemia-reperfusion injury. The increase in putrescine levels at the ischemic cortical and subcortical region was reduced by a mean of 45% with MDL 72527 treatment. These results suggest that the polyamine interconversion pathway has an important role in the postischemic increase in putrescine levels and that blocking of this pathway can be neuroprotective against neuronal cell damage after temporary focal cerebral ischemia.  相似文献   

8.
The membrane-permeant gas NO is a putative intercellular messenger that has been proposed on the basis of previous in vitro studies to be involved in synaptic plasticity, especially the induction of long-term potentiation (LTP) of excitatory synaptic transmission in the hippocampus and cortex. In the present study, the role of NO in synaptic plasticity has been investigated in vivo. In particular, the action of the novel and selective neuronal NO synthase (nNOS) inhibitor 7-nitro-indazole (7-NI) has been investigated on the induction of LTP and depotentiation (DP) of field EPSPs in CA1 of the hippocampus in vivo. Unlike previously studied nonselective NOS inhibitors, 7-NI does not increase arterial blood pressure. In vehicle-injected rats, high-frequency stimulation consisting of a series of trains at 200 Hz induced LTP. However, LTP induction was strongly inhibited in 7-NI (30 mg/kg, i.p.)-treated animals. The inhibitory effect of 7-NI on the induction of LTP was prevented by pretreatment with L-arginine, the substrate amino acid used by NOS. In control animals, low-frequency stimulation consisting of 900 stimuli at 10 Hz induced DP of previously established LTP, whereas in 7-HI-treated animals only a short-term depression was induced. This effect of 7-NI also was prevented by D-arginine. The LTP and DP induced in control animals in this study were NMDA receptor-dependent, the NMDA receptor antagonist 3-(R,S)-2-carboxypiperazin-4-yl-propyl-1- phosphonic acid inhibiting the induction of both forms of synaptic plasticity. The present experiments are the first to demonstrate that an NOS inhibitor blocks the induction of the synaptic component of LTP and DP in vivo and, therefore, these results strengthen evidence that the production of NO is necessary for the induction of LTP and DP.  相似文献   

9.
10.
To investigate the role of superoxide in the toxicity of nitric oxide (NO), we examined the effect of nitric oxide synthase (NOS) inhibition on brain infarction in transgenic mice overexpressing CuZn-superoxide dismutase (SOD-1). Male SOD-transgenic mice and non-transgenic littermates (30-35 g) were subjected to 60 min of middle cerebral artery occlusion followed by 24 h of reperfusion. Either NG-nitro-L-arginine methyl ester (L-NAME; 3 mg/kg), a mixed neuronal and endothelial NOS inhibitor, or 7-nitroindazole (7-NI; 25 mg/kg), a selective neuronal NOS inhibitor, was administered intraperitoneally 5 min after the onset of ischemia. At 24 h of reperfusion, the mice were decapitated and the infarct volume was evaluated in each group. In the nontransgenic mice, L-NAME significantly increased the infarct volume as compared with the vehicle, while 7-NI significantly decreased it. In the SOD-transgenic mice, L-NAME-treated animals showed a significantly larger infarct volume than vehicle-treated ones, whereas there were no significant differences between 7-NI- and vehicle-treated mice. Our findings suggest that selective inhibition of neuronal NOS ameliorates ischemic brain injury and that both neuronal and endothelial NOS inhibition may result in the deterioration of ischemic injury due to vasoconstriction of the brain. Since L-NAME increased infarct volume even in SOD-transgenic mice, the protective effect of SOD could result from the vasodilation by increased endothelial NO as well as the reduction of neuronal injury due to less production of peroxynitrite compared to wild-type mice. Moreover, the neurotoxic role of NO might not be dependent on NO itself, but the reaction with superoxide to form peroxynitrite, because of no additive effects of SOD and a neuronal NOS inhibitor.  相似文献   

11.
We investigated the relationships between methylphenidate (MPD) enantiomers and endogenous dopamine (DA) levels in striatal extracellular fluid, and that between DA level and locomotor activity, after intravenous administration of racemic MPD (2, 5 or 10 mg/kg dose) or the individual enantiomers (2.5 mg/kg dose) to rats. MPD and DA levels in the extracellular fluid were measured by in vivo brain microdialysis. The maximum levels of MPD enantiomers in the striatal extracellular fluid were obtained within 15 min after administration. On the other hand, the mean maximum DA levels after administration of 2-10 mg/kg dose of racemic MPD were obtained within 10 min with values in the range of 3.0- to 8.6-fold higher than the basal DA level. The maximum DA level (4.2-fold of the basal level) after administration of (+/-)-MPD was greater than that (2.2-fold) of the same dose of (-)-MPD. A clockwise hysteresis was observed between MPD concentration and DA level in the extracellular fluid after MPD administration. Locomotor activity after administration of (+)-MPD was also greater than (-)-MPD. From these results, it was shown that the locomotor activity induced by MPD may be related to the increase of DA level in the extracellular fluid, and the degree of increase of the DA level by (+)-MPD was greater than that of the (-)-isomer.  相似文献   

12.
We have previously demonstrated that the neuroprotective effect of the beta2-adrenoceptor agonist clenbuterol in vitro and in vivo was most likely mediated by an increased nerve growth factor (NGF) expression. In the present study, we examined whether clenbuterol was capable of inhibiting apoptosis caused by ischemia. Transient forebrain ischemia was performed in male Wistar rats (300 to 350 g) by clamping both common carotid arteries and reducing the blood pressure to 40 mm Hg for 10 minutes. Clenbuterol (0.1, 0.5, and 1.0 mg/kg intraperitoneally) was administered 3 hours before ischemia or immediately after ischemia. The brains were removed for histologic evaluation 7 days after ischemia. The time course of DNA fragmentation was determined 1, 2, 3 and 4 days after ischemia. Staining with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) was used for further analysis of DNA fragments in situ 3 days after ischemia. The NGF protein was assayed by enzyme-linked immunosorbent assay. Ten-minute forebrain ischemia damaged 80% to 90% of the neurons in the hippocampal CA1 region evaluated 7 days after ischemia. Pretreatment with clenbuterol (0.5 and 1.0 mg/kg) reduced the neuronal damage by 18.1% (P < 0.01) and 13.1% (P < 0.05), respectively. The neuroprotective effect also was found when clenbuterol (0.5 mg/kg) was administered immediately after ischemia (P < 0.05). The DNA laddering appeared in striatum 1 day and in hippocampus 2 days after ischemia and peaked on the third day in both regions. The DNA laddering was nearly abolished in the hippocampus and partially blocked in striatum and cortex by 0.5 mg/kg clenbuterol. These results were confirmed by TUNEL staining. Clenbuterol (0.5 mg/kg intraperitoneally) elevated the NGF protein level by 33% (P < 0.05) in the hippocampus and 41% (P < 0.05) in the cortex 6 hours after ischemia. Three days after ischemia, the NGF levels in these regions were no longer different between the clenbuterol-treated and control groups. This study clearly demonstrates that clenbuterol possesses a neuroprotective activity and a marked capacity to inhibit DNA degradation after global ischemia. The results suggest that clenbuterol increases NGF expression during the first hours after global ischemia and thereby protects neurons against apoptotic damage.  相似文献   

13.
We studied the effect of nitroglycerin (NTG) on cardiac nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) content in nitrate-tolerant/nontolerant rats in vivo. The effect of the pharmacological blockade of endogenous NO synthesis and the effect of exogenous NO on cardiac cGMP were also examined. Rats were treated with 100 mg/kg of NTG and corresponding vehicle s.c. three times a day for 2.5 days to induce NTG-tolerance/nontolerance. Rats were then administered a single dose of s.c. 100 mg/kg of NTG to test the effect of NTG in tolerant/nontolerant states, respectively. Nontolerant rats treated with vehicle were controls, and nontolerant rats treated with the NO synthesis inhibitor NG-nitro-L-arginine (LNNA, 20 mg/kg) were negative controls. Another group of nontolerant rats treated i.v. with the direct NO donor sodium nitroprusside (SNP, 3 mg/kg) were positive controls. Cardiac NO assessed by electron spin resonance after in vivo spin-trapping increased 100-fold (P < 0.05) in the positive control, 10-fold (P < 0.05) in the NTG-tolerant group, and 4-fold (P < 0.05) in the single NTG group, when compared to controls. In the negative control group, NO was reduced to near the detection limit (four-fold reduction, P < 0.05). Cardiac cGMP measured by radioimmunoassay was increased significantly (two-fold, P < 0.05) only in the positive control group, and there were no differences among the other groups. This shows that: 1) in vivo cardiac bioconversion of NTG to NO is not impaired in nitrate tolerance; and 2) changes in cardiac NO content are not reflected by changes in cGMP content in nitrate-tolerant and -nontolerant rats.  相似文献   

14.
Hereditary argininemia manifests as neurological disturbance and mental retardation, features not observed in other amino acidemias. The cytotoxic effect of a high concentration of L-arginine (L-Arg) was investigated using NB9 human neuroblastoma cells (NB9), which express neuronal nitric oxide synthase (nNOS). When the concentration of L-Arg in the medium increased from 50 microM to 2 mM after incubation for 48 hr, the intracellular concentration of L-Arg increased from 68.0 +/- 1 pmol/10(6) cells to 1310.0 +/- 5 pmol/10(6) cells and that of L-citrulline (L-Cit) from undetectable levels to 47.1 +/- 0.2 pmol/10(6) cells (mean +/- SD of three independent analyses). This increase in intracellular L-Arg levels caused a decrease in NOS activity by approximately 71%. Flow cytometric analysis showed that reactive oxygen species (ROS) are produced in NB9 exposed to 2 mM L-Arg. The production of ROS was abolished by a NOS inhibitor, NG-nitro-L arginine-methylester. Production of ROS was also observed when NB9 were treated with L-Cit for 48 hr. To investigate the effect of L-Cit on the activity of NOS, a kinetic study on nNOS was conducted using cellular extracts from NB9. The apparent Km value of nNOS for L-Arg was 8.4 microM, with a Vmax value of 8.2 pmol/min/mg protein. L-Cit competitively inhibited NOS activity, as indicated by an apparent Ki value of 65 nM. These results suggest that L-Cit formed by nNOS in L-Arg-loaded neuronal cells inhibits NOS activity and nNOS in these L-Arg-loaded cells functions as a NADPH oxidase to produce ROS, which may cause neurotoxicity in argininemia.  相似文献   

15.
The conclusion that cyclic 3'-5 guanosine monophosphate (cGMP) functions in a 'permissive' manner in promoting cerebrovasodilation during hypercapnia was based on findings showing that the nitric oxide synthase (NOS) inhibitor-induced repression of the CO2 response could be reversed upon addition of exogenous cGMP. We hypothesized that the action of cGMP revealed in those studies does not define its normal role in hypercapnic cerebral vasodilation, but rather is a unique function of the artificial situation of NOS inhibition coupled with cGMP repletion. Thus, although CO2 reactivity may be the same in normal versus cGMP-repleted animals, the factors contributing to that response may differ. To test that possibility, the effects of calcium-dependent (KCa) or ATP-sensitive (KATP) potassium channel blockers on pial arteriolar CO2 reactivity, in vivo, were evaluated in the presence and absence of NOS inhibition plus administration of a cGMP analogue. Pial arteriolar diameter changes in hypercapnia were measured in three principal groups of anesthetized rats: (I) KCa channel-inhibited (via iberiotoxin); (II) KATP channel-inhibited (via glibenclamide); and (III) controls. Group I and II rats were further divided into: (a) those treated with the neuronal NOS (nNOS) inhibitor, 7-nitroindazole (7-NI), followed by successive suffusions of the cGMP analogue, 8-bromo-cGMP (8Br-cGMP) and 8Br-cGMP+K-channel blocker; and (b) rats where 7-NI and 8Br-cGMP applications were omitted. Group III rats were divided into time and 8Br-cGMP controls. Hypercapnia (PCO2 congruent with60 mmHg, 3 min)-induced dilations were reduced by 70-80% following 7-NI and restored by 8Br-cGMP. That restoration was reversed by both K-channel blockers. In the absence of 7-NI and exogenous cGMP, CO2 reactivity was unaffected by K-channel inhibition. These findings confirmed that nNOS-derived NO is critically important to the hypercapnic reactivity of cerebral arterioles, and that cGMP repletion, following NOS inhibition, could restore CO2 reactivity. The observation that KCa and KATP channel blockade did not alter CO2 reactivity under baseline conditions, but attenuated CO2 reactivity only in the presence nNOS inhibition (and cGMP repletion), suggests that multiple, redundant, and interactive mechanisms participate in CO2-induced vasodilation. These results also imply that current strategies for revealing permissive actions of cGMP (or NO) may need to be re-evaluated.  相似文献   

16.
In this study the effect of post-treatment with rolipram, an inhibitor of cAMP phosphodiesterase, on neuronal damage following global ischemia was evaluated. Global cerebral ischemia was induced in male Wistar rats by four-vessel occlusion for 20 minutes. Rolipram was administered 6 hours after onset of ischemia and thereafter the following 7 days daily once at a dose of 0.3 or 3.0 mg/kg intraperitoneally. Four weeks after ischemia the amount of intact neurons in the hippocampus and in the striatum was assessed following perfusion fixation. The ischemia-induced neuronal damage in the CA1 sector of the hippocampus and in the striatum was reduced by rolipram at either dose. The present results show that treatment with rolipram reduces ischemic neuronal damage at a therapeutic window of 6 hours.  相似文献   

17.
The effects of 7-nitroindazole (7-NI), an inhibitor of the neuronal nitric oxide synthase (nNOS) which does not increase blood pressure, on tolerance to the antinociceptive activity of mu-(morphine), kappa-(U-50,488H) and delta-([D-Pen2, D-Pen5]enkephalin, DPDPE) opioid receptor agonists were determined in mice. Male Swiss-Webster mice were made tolerant by twice daily injections of morphine (20 mg/kg, s.c.), U-50,488H (25 mg/kg, i.p.) or DPDPE (20 micrograms/mouse, i.c.v.) for 4 days. When tested on day 5, tolerance to their antinociceptive activity was evidenced by decreased response in chronic drug treated mice in comparison to vehicle-injected mice. Concurrent administration of 7-NI (20, 40 or 80 mg/kg, i.p.) with DPDPE did not modify the development of tolerance to the antinociceptive action of DPDPE. However, 7-NI (40 or 80 mg/kg, i.p.) inhibited the development of tolerance to the antinociceptive activity of morphine and U-50,488H but the lower dose of 7-NI (20 mg/kg, i.p.) was not effective. Chronic administration of 7-NI by itself did not modify the acute response to morphine, U-50,488H or DPDPE. It is concluded that a specific inhibitor of nNOS can inhibit tolerance to the antinociceptive activity of mu- and kappa- but not of delta-opioid receptor agonists in mice.  相似文献   

18.
The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor (Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-iu m-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.  相似文献   

19.
The possible modulation of nitric oxide (NO) synthase (NOS) activity by protein kinase C (PKC) was investigated in primary cultures of rat cerebellar neurons. Incubation of the cells with L-arginine and nicotinamide-adenine dinucleotide phosphate (NADPH) produced detectable levels of NO, as quantified by photometric assay [0.14 +/- 0.03 nmol/h/dish (2.5 x 10(6) cells)]. The NO producing activity was paralleled by concomitant accumulation of cyclic GMP (cGMP) (0.12 +/- 0.02 pmol/dish). Downregulation of PKC by prolonged treatment with phorbol esters or inhibition of the kinase by treatment with 4taurosporine raised the basal levels of NO and cGMP five fold. When granule cells were incubated in the absence of extracellular Mg2+, N-methyl-D-aspartate and to a lesser extent, glutamate became effective in enhancing NO formation and cGMP accumulation with respect to the control. The NO and cGMP increases induced by the two agonists were almost doubled by treatment of the cells with staurosporine or depletion of PKC. Calphostin C. an inhibitor of the regulatory domain of PKC, was as effective as staurosporine in increasing the formation of NO in both resting and excited cells. These results indicate that downregulation or inhibition of PKC increase NOS activity in cerebellar neurons, and suggest that phosphorylation of NOS by PKC negatively modulates the catalytic activity of the enzyme in these cells.  相似文献   

20.
The mechanism by which (-) deprenyl enhances cognitive function in Alzheimer's disease (AD) is not yet understood. (-) Deprenyl (0.2 mg/kg/day) was administered intramuscularly to adult male monkeys (n = 6) for 25 days. Control monkeys (n = 6) received physiological saline by the same route. The activity of acetylcholinesterase (AChE) in different brain regions and the dendritic arborization in CA3 pyramidal neurons of hippocampus were analysed. (-) Deprenyl-treated monkeys showed a significant increase in the AChE activity by 43% (p < 0.001) in the frontal cortex, by 39% (p < 0.025) in the motor cortex, by 66% (p < 0.001) in the hippocampus and by 26% (p < 0.05) in the striatum compared to controls. The branching points and the intersections of both apical and basal dendrites of CA3 hippocampal pyramidal neurons were also significantly increased in (-) deprenyl-treated monkeys. Enhanced AChE activity may increase dendritic arborization in the hippocampus and it may also play a role in improving cognitive functions observed in AD, following (-) deprenyl treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号