首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A monolithically integrated five-stage traveling wave amplifier (TWA) with a single n-MOSFET in each gain cell was designed, fabricated and tested in low-cost, standard 0.18 /spl mu/m CMOS technology. Coplanar waveguides (CPW) replace the large area spiral inductors or coplanar strip-lines. A gain of 10 dB at 1 GHz and a unity-gain bandwidth of 12 GHz was measured for the TWA at a gate bias of V/sub GS/=1.2 V and a drain bias of V/sub DS/=1.8 V. The effects of temperature on its gain, phase and stability have been investigated, and are reported for the first time for a CMOS TWA.  相似文献   

2.
A monolithically integrated five-stage traveling wave amplifier (TWA) with a single n-MOSFET in each gain cell was designed, fabricated and tested in low-cost, standard 0.18 /spl mu/m CMOS technology. Coplanar waveguides (CPW) replace the large area spiral inductors or coplanar strip-lines. A gain of 10 dB at 1 GHz and a unity-gain bandwidth of 12 GHz was measured for the TWA at a gate bias of V/sub GS/=1.2 V and a drain bias of V/sub DS/=1.8 V. The effects of temperature on its gain, phase and stability have been investigated, and are reported for the first time for a CMOS TWA.  相似文献   

3.
This paper presents five-stage and seven-stage traveling-wave amplifiers (TWA) in a 0.12-/spl mu/m SOI CMOS technology. The five-stage TWA has a 4-91-GHz bandpass frequency with a gain of 5 dB. The seven-stage TWA has a 5-86-GHz bandpass frequency with a gain of 9 dB. The seven-stage TWA has a measured 18-GHz noise figure, output 1-dB compression point, and output third-order intercept point of 5.5 dB, 10 dBm, and 15.5 dBm, respectively. The power consumption is 90 and 130 mW for the five-stage and seven-stage TWA, respectively, at a voltage power supply of 2.6 V. The chips occupy an area of less than 0.82 and 1 mm for the five-stage and seven-stage TWA, respectively.  相似文献   

4.
In this paper, the design and the results of a CMOS traveling-wave amplifier (TWA) optimized for minimum noise figure is presented. Design tradeoffs and optimization guidelines for maximum operation frequency, gain and minimum noise are discussed by means of analytical calculations and simulations. The MMIC is fabricated using digital 90-nm silicon on insulator (SOI) technology and requires a chip area of only 0.3 mm/sup 2/. At a supply voltage of 2 V and a supply current of 66 mA, a gain of 9.7 dB/spl plusmn/1.6 dB is measured over a frequency range from 10 to 59 GHz. Toward dc, the gain increases up to 16 dB. The unity gain cutoff frequency is 71 GHz. At 20 and 40 GHz, the circuit has a 1-dB output compression point of 12.5 and 9.5 dBm, respectively. From 0.1 to 40 GHz, a noise figure below 3.8 dB is measured. The results are achieved at source/load impedances of 50 /spl Omega/ and include the pad parasitics. To the author's knowledge, the TWA has by far the lowest noise figure achieved for a silicon-based amplifier with comparable bandwidth.  相似文献   

5.
A micro-power complementary metal oxide semiconductor (CMOS) low-noise amplifier (LNA) is presented based on subthreshold MOS operation in the GHz range. The LNA is fabricated in an 0.18-/spl mu/m CMOS process and has a gain of 13.6 dB at 1 GHz while drawing 260 /spl mu/A from a 1-V supply. An unrestrained bias technique, that automatically increases bias currents at high input power levels, is used to raise the input P1dB to -0.2 dBm. The LNA has a measured noise figure of 4.6 dB and an IIP3 of 7.2 dBm.  相似文献   

6.
The authors discuss the development of 110-120-GHz monolithic low-noise amplifiers (LNAs) using 0.1-mm pseudomorphic AlGaAs/InGaAs/GaAs low-noise HEMT technology. Two 2-stage LNAs have been designed, fabricated, and tested. The first amplifier demonstrates a gain of 12 dB at 112 to 115 GHz with a noise figure of 6.3 dB when biased for high gain, and a noise figure of 5.5 dB is achieved with an associated gain of 10 dB at 113 GHz when biased for low-noise figure. The other amplifier has a measured small-signal gain of 19.6 dB at 110 GHz with a noise figure of 3.9 dB. A noise figure of 3.4 dB with 15.6-dB associated gain was obtained at 113 GHz. The authors state that the small-signal gain and noise figure performance for the second LNA are the best results ever achieved for a two-stage HEMT amplifier at this frequency band  相似文献   

7.
Chang  J.-F. Lin  Y.-S. 《Electronics letters》2009,45(20):1033-1035
A CMOS distributed amplifier (DA) with flat and low noise figure (NF), and flat and high gain (S 21) is demonstrated. A flat and low NF was achieved by adopting a RL terminating network for the gate transmission line, and a slightly under-damped Q-factor for the second-order NF response. Besides, flat and high S 21 was achieved using the proposed cascade gain cell, which constitutes a cascode-stage with a low-Q RLC load and a splitting-load inductive-peaking inverter stage. In the high-gain (HG) mode, the DA consumed 27.6 mW and achieved S 21 of 17.5 plusmn 1.23 dB with an average NF of 3.24 dB over the 3-10 GHz band, one of the best reported NF performances for a CMOS UWB DA or LNA in the literature. The measured IIP3 was 2.1 dBm (at 8 GHz). In the low-gain (LG) mode, the DA achieved S 21 of 10.74 plusmn 1.2 dB and an average NF of 4.67 dB with a low power dissipation of 9 mW.  相似文献   

8.
A 3-6 GHz CMOS broadband low noise amplifier (LNA) for ultra-wideband (UWB) radio is presented. The LNA is fabricated with the 0.18 /spl mu/m 1P6M standard CMOS process. Measurement of the CMOS LNA is performed using an FR-4 PCB test fixture. From 3 to 6 GHz, the broadband LNA exhibits a noise figure of 4.7-6.7 dB, a gain of 13-16 dB, and an input/output return loss higher than 12/10 dB, respectively. The input P/sub 1 dB/ and input IP3 (IIP3) at 4.5 GHz are about -14 and -5 dBm, respectively. The DC supply is 1.8 V.  相似文献   

9.
A novel circuit topology for a CMOS millimeter-wave low-noise amplifier (LNA) is presented in this paper. By adopting a positive-feedback network at the common-gate transistor of the input cascode stage, the small-signal gain can be effectively boosted, facilitating circuit operations at the higher frequency bands. In addition, $LC$ ladders are utilized as the inter-stage matching for the cascaded amplifiers such that an enhanced bandwidth can be achieved. Using a standard 0.18-$mu{hbox{m}}$ CMOS process, the proposed LNA is implemented for demonstration. At the center frequency of 40 GHz, the fabricated circuit exhibits a gain of 15 dB and a noise figure of 7.5 dB, while the return losses are better than 10 dB within the 3-dB bandwidth of 4 GHz. Operated at a 1.8-V supply, the LNA consumes a dc power of 36 mW.   相似文献   

10.
Two K-Band low-noise amplifiers (LNAs) are designed and implemented in a standard 0.18 /spl mu/m CMOS technology. The 24 GHz LNA has demonstrated a 12.86 dB gain and a 5.6 dB noise figure (NF) at 23.5 GHz. The 26 GHz LNA achieves an 8.9 dB gain at the peak gain frequency of 25.7 GHz and a 6.93 dB NF at 25 GHz. The input referred third-order intercept point (IIP3) is >+2 dBm for both LNAs with a current consumption of 30 mA from a 1.8 V power supply. To our knowledge, the LNAs show the highest operation frequencies ever reported for LNAs in a standard CMOS process.  相似文献   

11.
In this paper, a passive down mixer is proposed, which is well suited for short-channel field-effect transistor technologies. The authors believe that this is the first drain-pumped transconductance mixer that requires no dc supply power. The monolithic microwave integrated circuit (MMIC) is fabricated using digital 90-nm silicon-on-insulator CMOS technology. All impedance matching, bias, and filter elements are implemented on the chip, which has a compact size of 0.5 mm/spl times/0.47 mm. The circuit covers a radio frequency range from 30 to 40 GHz. At a RF frequency of 35 GHz, an intermediate frequency of 2.5 GHz and a local-oscillator (LO) power of 7.5 dBm, a conversion loss of 4.6 dB, a single-sideband (SSB) noise figure (NF) of 7.9 dB, an 1-dB input compression point of -6 dBm, and a third-order intercept point at the input of 2 dBm were measured. At lower LO power of 0 dBm, a conversion loss of 6.3 dBm and an SSB NF of 9.7 dB were measured, making the mixer an excellent candidate for low power-consuming wireless local-area networks. All results include the pad parasitics. To the knowledge of the authors, this is the first CMOS mixer operating at millimeter-wave frequencies. The achieved conversion loss is even lower than for passive MMIC mixers using leading edge III/V technologies, showing the excellent suitability of digital CMOS technology for analog circuits at millimeter-wave frequencies.  相似文献   

12.
A miniature Q-band low noise amplifier (LNA) using 0.13-/spl mu/m standard mixed signal/radio frequency complementary metal-oxide-semiconductor (CMOS) technology is presented in this letter. This three-stage common source thin-film microstrip LNA achieves a peak gain of 20dB at 43GHz with a compact chip size of 0.525mm/sup 2/. The 3-dB frequency bandwidth ranges from 34 to 44GHz and the minimum noise figure is 6.3dB at 41GHz. The LNA outperforms all the reported commercial standard CMOS Q-band LNAs, with the highest gain, highest output IP3, and smallest chip size.  相似文献   

13.
This letter presents a 5.7 GHz 0.18 /spl mu/m CMOS gain-controlled differential LNA for an IEEE 802.11a WLAN application. The differential LNA, fabricated with the 0.18 /spl mu/m 1P6M standard CMOS process, uses a current-reuse technology to increase linear gain and save power consumption. The circuit measurement is performed using an FR-4 PCB test fixture. The LNA exhibits a noise figure of 3.7 dB, linear gain of 12.5 dB, P/sub 1dB/ of -11 dBm, and gain tuning range of 6.9 dB. The power consumption is 14.4 mW at V/sub DD/=1.8 V.  相似文献   

14.
Low-power programmable gain CMOS distributed LNA   总被引:1,自引:0,他引:1  
A design methodology for low power MOS distributed amplifiers (DAs) is presented. The bias point of the MOS devices is optimized so that the DA can be used as a low-noise amplifier (LNA) in broadband applications. A prototype 9-mW LNA with programmable gain was implemented in a 0.18-/spl mu/m CMOS process. The LNA provides a flat gain, S/sub 21/, of 8 /spl plusmn/ 0.6dB from DC to 6.2 GHz, with an input impedance match, S/sub 11/, of -16 dB and an output impedance match, S/sub 22/, of -10 dB over the entire band. The 3-dB bandwidth of the distributed amplifier is 7GHz, the IIP3 is +3 dBm, and the noise figure ranges from 4.2 to 6.2 dB. The gain is programmable from -10 dB to +8 dB while gain flatness and matching are maintained.  相似文献   

15.
The authors report the 60-GHz noise performance of low-noise ion-implanted InxGa1-xAs MESFETs with 0.25 μm T-shaped gates and amplifiers using these devices. The device noise figure was 2.8 dB with an associated gain of 5.6 dB at 60 GHz. A hybrid two-state amplifier using these ion-implanted InxGa1-x As MESFETs achieved a noise figure of 4.6 dB with an associated gain of 10.1 dB at 60 GHz. When this amplifier was biased at 100% I dss, it achieved 11.5-dB gain at 60 GHz. These results, achieved using low-cost ion-implantation techniques, are the best reported noise figures for ion-implanted MESFETs  相似文献   

16.
40-Gbit/s OEIC on GaAs substrate through metamorphic buffer technology   总被引:1,自引:0,他引:1  
An optoelectronic integrated circuit operating in the 1.55-/spl mu/m wavelength range was realized on GaAs substrate through metamorphic technology. High indium content layers, metamorphically grown on a GaAs substrate, were used to fabricate the optoelectronic integrated circuits (OEICs) with -3 dB bandwidth of 40 GHz and 210 V/W of calculated responsivity. The analog OEIC photoreceiver consists of a 12-/spl mu/m, top-illuminated p-i-n photodiode, and a traveling wave amplifier (TWA). This receiver shows 6 GHz wider bandwidth than a hybrid photoreceiver, which was built using comparable, but stand-alone metamorphic p-i-n diode and TWA. With the addition of a buffer amplifier, the OEIC shows 7 dB more gain than the hybrid counterpart. To our knowledge, this is the first 40 Gbit/s OEIC achieved on a GaAs substrate operating at 1.55 /spl mu/m.  相似文献   

17.
A 6-9 GHz ultra-wideband CMOS power amplifier(PA) for the high frequency band of China's UWB standard is proposed.Compared with the conventional band-pass filter wideband input matching methodology,the number of inductors is saved by the resistive feedback complementary amplifying topology presented.The output impendence matching network utilized is very simple but efficient at the cost of only one inductor.The measured S_(22) far exceeds that of similar work.The PA is designed and fabricated with TSMC 0...  相似文献   

18.
A two-stage self-biased cascode power amplifier in 0.18-/spl mu/m CMOS process for Class-1 Bluetooth application is presented. The power amplifier provides 23-dBm output power with a power-added efficiency (PAE) of 42% at 2.4 GHz. It has a small signal gain of 38 dB and a large signal gain of 31 dB at saturation. This is the highest gain reported for a two-stage design in CMOS at the 0.8-2.4-GHz frequency range. A novel self-biasing and bootstrapping technique is presented that relaxes the restriction due to hot carrier degradation in power amplifiers and alleviates the need to use thick-oxide transistors that have poor RF performance compared with the standard transistors available in the same process. The power amplifier shows no performance degradation after ten days of continuous operation under maximum output power at 2.4-V supply. It is demonstrated that a sliding bias technique can be used to both significantly improve the PAE at mid-power range and linearize the power amplifier. By using the sliding bias technique, the PAE at 16 dBm is increased from 6% to 19%, and the gain variation over the entire power range is reduced from 7 to 0.6 dB.  相似文献   

19.
A variable-gain low-noise amplifier (LNA) suitable for low-voltage and low-power operation is designed and implemented in a standard 0.18 /spl mu/m CMOS technology. With a current-reused topology, the common-source gain stages are stacked for minimum power dissipation while achieving high small-signal gain. The fully integrated 5.7 GHz LNA exhibits 16.4 dB gain, 3.5 dB noise figure and 8 dB gain tuning range with good input and output return losses. The LNA consumes 3.2 mW DC power from a supply voltage of 1 V. A gain/power quotient of 5.12 dB/mW is achieved in this work.  相似文献   

20.
A 24 GHz monolithic low-noise amplifier (LNA) is implemented in a standard 0.18 /spl mu/m CMOS technology. Measurements show a gain of 12.86 dB and a noise figure of 5.6 dB at 23.5 GHz. The input and output return losses are better than 11 dB and 22 dB across the 22-29 GHz span, respectively. The operation frequency of 24 GHz is believed to be the highest reported for LNA in a standard CMOS technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号