首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Electrochemical catalysts based on Pd deposited by Physical Vapour Deposition on YSZ were used for methane deep oxidation. Different thicknesses of Pd films varying from 11 to 75 nm were catalytically characterized between 150 and 750 °C. The Pd loadings were extremely low. Catalytic and EPOC experiments were carried out on those electrochemical catalysts. Their catalytic activities were compared with the performances of a reference catalyst. It was found that the catalytic activity can be in situ tuned by applying an anodic polarization thus supplying oxygen ions at the surface of the catalyst. Faradaic efficiency values up to 258 were observed and the induced modifications of the catalytic rate were typically 100 times higher than the corresponding ionic current. The influence of the polarization on the temperature of decomposition of the palladium oxide was also examined. The polarization was found to enhance the thermal stability of the oxide and turn palladium oxide into metallic palladium at higher temperatures.  相似文献   

2.
A honeycomb monolith of YSZ (yttria stabilized zirconia) was used, for the first time, as a solid electrolyte to perform electrochemical promotion of the deep oxidation of methane. The goal of this study was to validate the concept of Electrochemical Promotion of Catalysis (EPOC) by using Pd particles dispersed on the channels surface of a YSZ dense honeycomb monolith. The Pd catalyst was an effective material as methane conversion reached 20% at about 320 °C. The catalytic properties of the monolithic electrochemical catalyst were investigated upon electrical polarization at 400 °C. Non faradaic effects were observed both under positive and negative polarizations with a maximum of the faradaic efficiency of 47.  相似文献   

3.
Palladium (Pd) supported on CeO2-promoted γ-Al2O3 with various CeO2 (ceria) crystallinities, were used as catalysts in the methane steam reforming reaction. X-ray diffraction (XRD) analysis, FTIR spectroscopy of adsorbed CO, and X-ray photoelectron spectroscopy (XPS) were employed to characterize the samples in terms of Pd and CeO2 structure and dispersion on the γ-Al2O3 support. These results were correlated with the observed catalytic activity and deactivation process. Arrhenius plots at steady-state conditions are presented as a function of CeO2 structure. Pd is present on the oxidized CeO2-promoted catalysts as Pd0, Pd+ and Pd2+, at ratios strongly dependent on CeO2 structure. XRD measurements indicated that Pd is well dispersed (particles <2 nm) on crystalline CeO2 and is agglomerated as large clusters (particles in 10–20 nm range) on amorphous CeO2. FTIR spectra of adsorbed CO revealed that after pre-treatment under H2 or in the presence of amorphous CeO2, partial encapsulation of Pd particles occurs. CeO2 structure influences the CH4 steam reforming reaction rates. Crystalline CeO2 and dispersed Pd favor high reaction rates (low activation energy). The presence of CeO2 as a promoter conferred high catalytic activity to the alumina-supported Pd catalysts. The catalytic activity is significantly lower on Pd/γ-Al2O3 or on amorphous (reduced) CeO2/Al2O3 catalysts. The reaction rates are two orders of magnitude higher on Pd/CeO2/γ-Al2O3 than on Pd/γ-Al2O3, which is attributed to a catalytic synergism between Pd and CeO2. The low rates on the reduced Pd/CeO2/Al2O3 catalysts can be correlated with the loss of Pd sites through encapsulation or particle agglomeration, a process found mostly irreversible after catalyst regeneration.  相似文献   

4.
Catalytic activities of supported Pd were investigated for low temperature oxidation of methane. Pd/SnO2 catalysts demonstrated excellent activity for methane oxidation in spite of their low surface area. The catalytic activity of Pd/SnO2 was strongly affected by the preparation procedure. Impregnation of Pd on SnO2 using aqueous solution of Pd(CH3COO)2 was most effective in enhancing the catalytic activity. The catalytic activity was also improved when well-crystallized SnO2 was employed as a support material. TEM observations revealed that catalytic activity is strongly influenced by the dispersion state of Pd. For the active catalysts, strong interaction between Pd and SnO2 support was observed in the adsorption of oxygen.  相似文献   

5.
In this work, we have investigated for the first time the selective catalytic reduction of N2O by C3H6 over an electrochemical catalyst (Pt/K-βAl2O3). It was evaluated the influence of the reaction conditions (temperature, oxygen concentration, water vapour presence and time on stream treatment under reaction conditions) on the catalytic performance of the electrochemical catalyst. Electrochemical pumping of potassium ions to the Pt catalyst working electrode strongly increased the N2O reduction rate, activating the catalyst at lower temperatures. However, it was found that the efficiency of the electrochemical promotion decreased as the oxygen concentration increased because of a strong inhibition of propene adsorption and a relative increase of the oxygen coverage. On the contrary, the presence of potassium ions on the Pt catalyst strongly decreased the inhibiting effect of water vapour, increasing the catalytic activity of the catalyst. In addition, the catalyst stability was confirmed by a deactivation study. It was found that a long term treatment at high temperature under operating conditions had a positive effect on the efficiency of the Pt/K-βAl2O3 electrochemical catalyst.  相似文献   

6.
The phenomena of induction period of methanol formation, observed in CO---H2 reaction over Pd/CeO2 catalysts under SMSI state, was investigated in depth. The magnitude of the induction period was dependent on the extent of SMSI, and higher temperature H2 reduction lengthened it accompanied with the increase of the number of active sites for methane formation. On the contrary, by the pretreatment of SMSI surface with water vapor, this induction period almost disappeared with the drastic decrease of methane formation rate. These results indicate that methane formation sites would be transformed into methanol formation sites by the oxidation of water vapor formed during CO---H2 reaction. Infrared spectroscopic investigation of adsorbed CO after various pretreatments indicated that during the induction period thin layers of reduced ceria, which preferentially covered Pd(1 1 1) plane under SMSI state, were removed from the Pd(1 1 1) plane by formed water vapor during CO---H2 reaction. It was concluded that Pd(1 1 1) plane adjacent to ceria would be the efficient active sites for methanol formation.  相似文献   

7.
Ceria supported 2 wt% Pd catalysts for low-temperature methane combustion were prepared by the impregnation (IM) and deposition–precipitation (DP) methods, which are denoted as Pd–IM and Pd–DP, respectively. DP was found to be an available method for achieving high activity and stability of the Pd/CeO2 catalyst. The temperatures for methane ignition (T10%) and total conversion (T100%) over Pd–DP are 224 and 300 °C at GHSV of 50,000 h−1, which are 83 and 110 °C lower than the corresponding temperatures of Pd/Al2O3. X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS) analyses show that palladium species in Pd–DP is highly dispersed, positively charged and difficultly reduced. Raman spectra disclosed that the largest concentration of defects and/or oxygen vacancies was formed in Pd–DP catalyst. A kind of cationic PdOδ+ sites with higher binding energies than PdO are in close vicinity to the oxygen vacancies in the CeO2 support and might act as the active centers for methane oxidation. Furthermore, the deactivation and steam aging tests for Pd–DP showed that the performance of this type of palladium was very stable and could be repeatedly recovered after several long time aging tests.  相似文献   

8.
Ni catalysts supported on γ-Al2O3, CeO2 and CeO2–Al2O3 systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2–Al2O3 catalysts showed much better catalytic performance than either CeO2- or γ-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal–support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/γ-Al2O3 catalysts for this reaction. A weight loading of 1–5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2.  相似文献   

9.
The phenomenon of electrochemical promotion of catalysis (EPOC) was initially characterized as fully reversible, i.e. the catalyst restores its initial activity after current interruption. However, it has been recently demonstrated that after prolonged anodic polarization an unusual promoted activity is observed for a certain time after current interruption. This phenomenon has been reported as permanent electrochemical promotion of catalysis (P-EPOC).In this work the oxygen storage reported as responsible of P-EPOC has been investigated by transient electrochemical techniques using an O2(g)Pt/YSZ cell. A model has been proposed involving place interchange of Pt and O species in Pt/YSZ system. This seems to be induced by the strong lateral interaction of Pt–O surface dipoles and by increasing electric field at the Pt/YSZ interface. Such a rearranged oxide, so-called “phase oxide” can have a lower free energy than the initial monolayer oxide. This cooperative interaction of Pt and O species can lead to further thickening of this “phase oxide” especially at high temperature and potentials (currents). Furthermore, as the charge involved in this oxide thickening shows a t1/2 dependency, the process seems to be diffusion controlled.  相似文献   

10.
The effect of electrochemical promotion (EP) or non-faradaic electrochemical modification of catalytic activity (NEMCA) was studied in the catalytic reaction of the total oxidation of propane on Pt and Rh films deposited on Y2O3-stabilized-ZrO2 (or YSZ), an O2− conductor, in the temperature range 420–520 °C. In the case of Pt/YSZ and for oxygen to propane ratios lower than the stoichiometric ratio it was found that the rate of propane oxidation could be reversibly enhanced by application of both positive and negative overpotentials (“inverted volcano” behavior), by up to a factor of 1350 and 1130, respectively. The induced rate increase Δr exceeded the corresponding electrochemically controlled rate I/2F of O2− transfer through the solid electrolyte, resulting in absolute values of the apparent faradaic efficiency Λ=Δr/(I/2F) up to 2330. The Rh/YSZ system exhibited similar EP behavior. Abrupt changes in the oxidation state of the rhodium catalyst, accompanied by changes in the catalytic rate, were observed by changing the O2 to propane ratio and catalyst potential. The highest rate increases, by up to a factor of 6, were observed for positive overpotentials with corresponding absolute values of faradaic efficiency Λ up to 830. Rate increases by up to a factor of 1.7 were observed for negative overpotentials. The observed EP behavior is explained by taking into account the mechanism of the reaction and the effect of catalyst potential on the binding strength of chemisorbed reactants and intermediates and on the oxidative state of the catalyst surface.  相似文献   

11.
Three different vanadium-modified Pd/Al2O3 catalysts were prepared and tested as catalysts for the deep oxidation of methane. Vanadium was added to the palladium catalyst by incipient wetness of palladium catalyst in order to modify its properties and improve its thermal stability and thioresistance. The behaviour of vanadium-modified catalysts depends on the concentration of this compound, being 0.5 wt.% the optimum amount. However, when strong catalyst poisons are present in the gas (SO2), these modified catalysts do not show a better performance than unmodified catalyst. Bimetallic catalysts were tested with and without further reduction, being observed that reduced bimetallic catalysts perform worse than the non-reduced ones.  相似文献   

12.
The effect of the support nature on the performance of Pd catalysts during partial oxidation of ethanol was studied. H2, CO2 and acetaldehyde formation was favored on Pd/CeO2, whereas CO production was facilitated over Pd/Y2O3 catalyst. According to the reaction mechanism, determined by DRIFTS analyses, some reaction pathways are favored depending on the support nature, which can explain the differences observed on products distribution. On Pd/Y2O3 catalyst, the production of acetate species was promoted, which explain the higher CO formation, since acetate species can be decomposed to CH4 and CO at high temperatures. On Pd/CeO2 catalyst, the acetaldehyde preferentially desorbs and/or decomposes to H2, CH4 and CO. The CO formed is further oxidized to CO2, which seems to be promoted on Pd/CeO2 catalyst.  相似文献   

13.
The catalytic combustion of the emission from coke ovens containing various volatile organic compounds (VOCs) and inorganic species over a La0.9Ce0.1CoO3 catalyst is investigated in an integral fixed reactor through several steps. (1) Combustion of a mixture of VOC reveals that the kinetics of total oxidation of methane determines the total VOC conversion. (2) The conversion of methane, in the case of sulfur-free feed is inhibited by H2O and CO2.  相似文献   

14.
Methane combustion over Pd/Al2O3 catalysts with and without added Pt and CeO2 in both oxygen-rich and methane-rich mixtures at temperatures in the range 250–520°C has been investigated using a temperature-programmed reaction procedure with on-line gas analysis (FTIR). During the temperature loop under oxygen-rich conditions, there was an appreciable hysteresis in the activity of unmodified Pd/Al2O3, which was greatly enhanced over Pd–Pt/Al2O3. Over both catalysts the hysteresis was reversed under slightly methane-rich atmospheres, and as temperature was reduced, a sudden collapse or fluctuations in activity were shown respectively over Pd–Pt/Al2O3 and Pd/Al2O3. Such non-steady behaviour was almost eliminated over Pd/Al2O3–CeO2. Under a very narrow range of conditions and over a Pd/Al2O3 packed bed, oscillation of methane combustion was observed.  相似文献   

15.
Low temperature CO oxidation was carried out over CeO2-TiO2 composite oxide and thereon supported Pd catalysts. The effects of Ce/Ti ratio and pre-treatments of calcination and reduction on the catalytic behaviour were investigated. The CO oxidation starts at about 220 °C over CeO2-TiO2 and the pre-reduction treatment has little influence on the catalytic activity. Pd supported on CeO2-TiO2 (Pd/CeO2-TiO2) exhibits high activity for CO oxidation and a complete conversion of CO to CO2 can be achieved even at ambient temperature, which suggests a synergistic effect between Pd and CeO2-TiO2. The activity and stability of Pd/CeO2-TiO2 can be further improved by the pre-reduction treatment. Ce/Ti ratio influences the catalytic behaviour significantly; the catalyst Pd/CeO2-TiO2 with a Ce/Ti mole ratio of 0.20 (Pd/Ce20Ti) owns the highest activity and stability, which suggests an optimization of the Pd-Ce-Ti interaction in Pd/Ce20Ti. The calcined Pd/CeO2-TiO2 with a Ce/Ti mole ratio higher than 0.10 shows a distorted light-off profile with the temperature, which implies an alternation of the reaction mechanism with increasing temperature.  相似文献   

16.
This study reports the influence of palladium salt precursor on the catalytic activity of palladium-doped hexaaluminate catalysts for the combustion of 1 vol% CH4 in the presence of CO2 and H2O as inhibitors. Thermal stability of the catalysts is evaluated in long-term catalytic test at 700 °C. The hexaaluminate supports were synthesized using two different procedures: conventional coprecipitation and solid/solid diffusion procedure. Palladium impregnation was carried out by two different routes using Pd(NO3)2 in water or Pd(acac)2 in toluene as impregnation solution. It was observed that using Pd(acac)2 as precursor allows to attain higher dispersion of the active phase (Pd particles size <3 nm). Compared to the catalysts obtained by impregnation of Pd(NO3)2, higher catalytic activities are then obtained. Nevertheless, a deactivation of the samples obtained using Pd(acac)2 is observed. At the end of the stability test, almost similar catalytic activity is obtained whatever the palladium precursor. Reduction–reoxidation experiment showed that this deactivation is irreversible, and TEM analysis suggest that this deactivation is related to the sintering of Pd particles under reaction over samples synthesized using Pd(acac)2 as precursor.  相似文献   

17.
We have investigated the kinetics, rate oscillations and electrochemical promotion of CO oxidation on Pt deposited on YSZ using a standard oxygen reference electrode at temperatures 300–400 °C. We have found that electropromotion is small (ρ < 3) when the catalyst potential UWR, is below 0.4 V and very pronounced (ρ  9, Λ  1500) when UWR exceeds 0.4 V. This sharp transition in the electropromotion behavior is accompanied by an abrupt change in reaction kinetics and in catalyst potential. For fixed temperature this transition, which leads to a highly active electropromoted state, occurs at specific ratio and catalyst potential. It is shown via comparison with independent catalyst potential–catalyst work function measurements that the transition corresponds to the onset of extensive O2− spillover from YSZ onto the catalyst surface, and concomitant establishment of an effective double layer at the catalyst–gas interface, which is the cause of the highly active electropromoted state.  相似文献   

18.
A novel CeO2–Y2O3 (CY) washcoat on cordierite honeycomb was prepared by an impregnation method, which was used as a support to prepare a Pd catalyst. A model reaction of the complete combustion of toluene was conducted to evaluate the performance of the developed Pd/CY catalyst. The CY washcoat support and the Pd/CY catalyst were characterized by XRD, Raman spectroscopy, H2-TPR and SEM techniques. The results show that compared with conventional washcoat the CY washcoat has better adhesion and higher vibration- and heat-resistance. The CY washcoat can anchor well Pd onto the cordierite honeycomb substrate. The formation of a CeO2–Y2O3 solid solution and the steady present of PdO occur at high calcination temperatures, resulting in a better thermal stability. On a Pd/CY catalyst calcined at 500 °C, a 99% of toluene conversion was obtained at 210 °C, and it was stable for reaction time up to 30 h.  相似文献   

19.
The aim of this work was to identify the optimum synthesis conditions and the most effective technique for noble metal deposition in a perovskite/palladium-based catalyst for natural gas combustion. The solution combustion synthesis (SCS) of perovskite/zirconia-based materials was investigated, by starting from metal nitrates/glycine mixtures. Characterization and catalytic activity tests were performed on as-prepared powders and then repeated after calcination for 2 h at 900 °C in calm air. Calcination appeared to be beneficial in that, despite lowering the specific surface area, it promoted the simultaneous crystallization of both LaMnO3 and ZrO2 and the half-conversion temperature (T50), regarded as an index of catalytic activity, was lowered. Two phases, both active towards methane oxidation – lanthanum manganate and palladium oxide – were combined so as to evaluate their synergism in terms of catalytic activity. Pd was therefore added either via incipient wetness impregnation on LaMnO3·2ZrO2 or through a one-step SCS-based route. Characterization and catalytic activity tests followed suit. Optimal composition and preparation routes were found: T50 was lowered from 507 °C – pure LaMnO3 prepared via SCS – to 432 °C attained with a 2% (w/w) Pd load on pre-calcined LaMnO3·2ZrO2.  相似文献   

20.
This study has shown that the phenomenon of electrochemical promotion can be used to activate a metal catalyst for the selective catalytic reduction of nitrogen oxides (NOx) in the presence of water in the feed. The application of different potentials optimized the catalytic performance of the Pt catalyst-working electrode at each reaction temperature range. In addition, the measurement of the open circuit voltage in the cell gave useful information on the competitive adsorption between the reactants. Thus, very interestingly, the combined use of the Pt/K–βAl2O3 cell as a sensor and as an electrochemical catalyst allows anticipating and optimizing the catalytic behaviour of the system under changing reaction conditions, such as those found in the exhaust of an engine. Finally, characterization of the cell by Cyclic Voltammetry along with NOx analysis and XRD provided useful information about the nature of the promoter species under wet reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号