首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we fabricate heterojunction silicon solar cells on p-type substrates whose rear surface configuration is based on dielectric passivation and laser fired contacts (LFC cells). This is an alternative to boron-doped amorphous silicon film, with which we also fabricate solar cells for direct comparison (HJ cells). As substrates, 3.5 and 0.8 Ω cm p-type double-side polished FZ c-Si wafers are used. Regarding surface passivation for highly doped substrates, LFC configuration has some advantage due to the higher difficulty in creating an efficient amorphous back surface field. Additionally, those substrates are also more advantageous in terms of carrier injection when the rear surface is locally contacted. Thus LFC cells made on 0.8 Ω cm substrates reach Voc values up to 680 mV, in the same range as that of their HJ cell counterpart, with better FF demonstrating that LFC configuration is a feasible alternative for highly doped substrates. Focusing on the impact of the distance between rear contacts on cell performance, we found a trade-off between open circuit voltage Voc and fill factor FF. Finally electroluminescence characterization and the dependence of Voc on pitch, modeled by Fischer's equation, indicate that the depassivated area due to the laser processing of the contacts is bigger than the contacted area.  相似文献   

2.
The modifications of the surface and subsurface properties of p-type multicrystalline silicon (mc-Si) after wet chemical etching and hydrogen plasma treatment were investigated. A simple heterojunction (HJ) solar cell structure consisting of front grids/ITO/(n)a-Si:H/(p)mc-Si/Al was used for investigating the conversion efficiency. It is found that the optimized wet chemical etching and cleaning processes as a last technological step before the deposition of the a-Si:H emitter are more favorable to HJ solar cells fabrication than the hydrogenation. Solar cells on p-type mc-Si were prepared without high-efficiency features (point contacts, back surface field). They exhibited efficiencies up to 13% for a cell area of 1 cm2 and 12% for a cell area of 39 cm2.  相似文献   

3.
In this paper, we present a multi-crystalline solar cell with hexagonally aligned hemispherical concaves, which is known as honeycomb textured structure, for an anti-reflecting structure. The emitter and the rear surface were passivated by silicon nitride, which is known as passivated emitter and rear (PERC) structure. The texture was fabricated by laser-patterning of silicon nitride film on a wafer and wet chemical etching of the wafer beneath the silicon nitride film through the patterned holes. This process succeeded in substituting the lithographic process usually used for fabricating honeycomb textured structure in small area. After the texturing process, solar cells were fabricated by utilizing conventional fabrication techniques, i.e. phosphorus diffusion in tube furnace, deposition of anti-reflection film and rear passivation film by chemical vapor deposition, front and rear electrodes formation by screen printing, and contact formation by furnace. By adding relatively small complicating process to conventional production process, conversion efficiency of 19.1% was achieved with mc-Si solar cells of over 200 cm2 in size. The efficiency was independently confirmed by National Institute of Advanced Industrial Science and Technology (AIST).  相似文献   

4.
多晶硅太阳电池以其价格低廉的优势成为低成本太阳电池的首选,但其光电转换效率提升空间有限。钝化发射极和背面电池(PERC)技术是当前晶硅太阳电池提效的主要途径。多晶PERC电池结合了多晶硅电池的低成本和PERC电池的高效,是当前多晶硅电池的研究热点。本文研究了多晶PERC电池的背面和正面结构优化与设计,提出了提高多晶PERC电池效率的产业化技术方法。通过在硅片背面用三层SiNx:H薄膜来代替常规双层SiNx:H薄膜,在保证优良的背面钝化的同时,使电池长波响应得到改善,电池光电转换效率由20.19% 提升至20.26%。优化多晶PERC电池的背面激光开窗工艺,使多晶电池效率较常规工艺提升0.11%。而在多晶PERC电池的正面叠加选择性发射极技术,可较常规工艺提升电池效率0.10%。综合运用多种提效手段有利于保持多晶PERC电池的竞争力。  相似文献   

5.
Undoped hydrogenated amorphous silicon (a-Si:H)/p-type crystalline silicon (c-Si) structures with and without a microcrystalline silicon (μc-Si) buffer layer have been investigated as a potential low-cost heterojunction (HJ) solar cell. Unlike the conventional HJ silicon solar cell with a highly doped window layer, the undoped a-Si:H emitter was photovoltaically active, and a thicker emitter layer was proven to be advantageous for more light absorption, as long as the carriers generated in the layer are effectively collected at the junction. In addition, without using heavy doping and transparent front contacts, the solar cell exhibited a fill factor comparable to the conventional HJ silicon solar cell. The optimized configuration consisted of an undoped a-Si:H emitter layer (700 Å), providing an excellent light absorption and defect passivation, and a thin μc-Si buffer layer (200 Å), providing an improved carrier collection by lowering barrier height at the interface, resulting in a maximum conversion efficiency of 10% without an anti-reflective coating.  相似文献   

6.
We report the fabrication of buried contact solar cells using porous silicon as sacrificial layer to create well-defined channels (for buried contacts) in silicon. In this paper, the salient features of the technology have been presented. No detrimental effect was found in the performance of buried contact solar cell with partially filled contact area compared to the solar cells having conventional planar contacts. However, a marked difference in the short circuit current density was seen when channel was fully filled with metal by screen printing, without degradation in the open-circuit voltage. It is expected that improved processing in combination with optimized buried metallic contact parameters may yield higher efficiencies that may result in substantial decrease in solar cell cost.  相似文献   

7.
High-efficiency PERL (passivated emitter, rear locally diffused) and PERT (passivated emitter, rear totally diffused) silicon solar cells have been fabricated on FZ and MCZ (magnetically confined Czochralski) substrates at the University of New South Wales. One of the PERL cells on FZ substrates demonstrated 24.7% efficiency at Sandia National Laboratories under the standard global AM1.5 spectrum (100 mW/cm2) at 25°C. Another PERT cell on a MCZ substrate, supplied by SEH, Japan, demonstrated 24.5% efficiency at Sandia under the same test conditions. Both these efficiencies are the highest ever reported for FZ and MCZ silicon cells, respectively. The cells made on MCZ substrates also showed stable cell performance.  相似文献   

8.
To improve the cell performance of single-crystal silicon solar cells, the process conditions have been optimized by monitoring the bulk lifetime after each thermal step in the cell fabrication process. The emitter geometry, i.e., front and rear contact size and pitch were optimized, and the cells were fabricated through a set of environmentally considered processes, especially for surface treatment, oxidation, diffusion, and electrode fabrication. Conversion efficiency of 22.3% in a 4 cm2 cell, and 22.6% in a 1 cm2 cell, was attained, respectively, with structural features of SiO2 single-AR, “inverted-pyramid” fron texture, point-contact with line-emitter for front electrodes, and locally diffused BSF for rear contacts.  相似文献   

9.
Boron-oxygen defects can cause serious light-induced degradation (LID) of commercial solar cells based on the boron-doped crystalline silicon (c-Si), which are formed under the injection of excess carriers induced either by illumination or applying forward bias. In this contribution, we have demonstrated that the passivation process of boron-oxygen defects can be induced by applying forward bias for a large quantity of solar cells, which is much more economic than light illumination. We have used this strategy to trigger the passivation process of batches of aluminum back surface field (Al-BSF) solar cells and passivated emitter and rear contact (PERC) solar cells. Both kinds of the treated solar cells show high stability in efficiency and suffer from very little LID under further illumination at room temperature. This technology is of significance for the suppression of LID of c-Si solar cells for the industrial manufacture.  相似文献   

10.
高效单晶硅太阳电池的研制   总被引:4,自引:2,他引:4  
简述了高效单晶硅太阳电池的初步研制结果。对电阻率不同的CZ和FZ材料和不同的电池结构进行了实验。为了提高效率,对发射区钝化工艺、分区轻(n^+)重(n^++)扩散、背场、表面织构化技术和氯清洗等工艺进行试验研究。目前制备的最好电池,其效率为18.63%。  相似文献   

11.
The light trapping characteristics in the wavelength range of 0.5−1.2 μm for the random back-reflective silicon film with omnidirectional top anti-reflection are numerically analyzed based on the simplified probability method. The spectrum averaged maximum external quantum efficiency (EQE) for the 5 μm thick silicon film is evaluated with an increase of 10.6% compared with the best bulk planar silicon solar cell—suggesting that an efficiency higher than those of the best bulk planar cell can be obtained for thin film silicon solar cells several microns thick. The light absorption curves drop slowly with increased back absorption, exhibiting that the performance of the thin film silicon solar cell with light trapping is tolerant of back absorption.  相似文献   

12.
The passivated emitter and rear cell (PERC) structure has significant efficiency advantages over the conventional 100% metallised back contact structure for industrial quality multicrystalline silicon. For this material the PERC structure also has only a slightly lower efficiency potential than a more complex structure with rear local diffusions. The PERC structure has previously only been modelled for high efficiency applications. In this work, an optimisation of the PERC structure was performed over a range of wafer resistivities and material qualities. It was shown that the PERC structure has a broad optimum in back contact design, allowing flexibility in manufacturing. There was little difference between a stripe structure and a dot structure of the same contact fraction provided the back contact spacing was optimised in each case. It was shown that contact resistance was negligible in PERC cells compared to spreading resistance for optimised back contact spacings. It was also demonstrated that an analytical expression due to Cox and Strack provided a good approximation for spreading resistance in thick PERC cells, but underestimated the spreading resistance in thinner PERC cells.  相似文献   

13.
As the thickness of crystalline silicon solar cells decreases, light loss cannot be avoided due to the absorption limit in long wavelength light. Internal rear side reflection can be enhanced by polishing the rear surface. The rear polishing processes are performed before the texturing and before and after doping the emitter layer to optimize the solar cell fabrication process sequences. All cells made by rear surface polishing showed improved light trapping in long wavelength region (900-1100 nm) compared to that in the conventional cells. However, silicon solar cells fabricated by rear polishing before and after doping have similar (35.5 mA/cm2) or lower (35.26 mA/cm2) short circuit current density compared to the cells produced by the conventional process (35.59 mA/cm2) due to pore damage to the anti-reflection layer and the surface of the emitter layer during rear polishing. This surface damage was effectively prevented adapting the rear surface polishing before the front surface texturing, which led to increasing the current density from 35.59 to 36.29 mA/cm2.  相似文献   

14.
This paper presents, for the first time, a low-cost, high-throughput manufacturing approach for fabricating n-base dendritic web silicon solar cells with selectively doped emitters and self-aligned aluminum contacts using rapid thermal processing (RTP) and screen printing. The self-aligned locally diffused emitter (SALDE) structure is p+ nn++ where aluminum is screen-printed on a boron-doped emitter and fired in a belt furnace to form a deep self-doped p+-layer and a self-aligned positive contact to the emitter according to the well-known aluminum-silicon (Al---Si) alloying process. The SALDE structure preserves the shallow emitter (20.2 μm) everywhere except directly beneath the emitter contact. There the junction depth is greater than 5 μm, as desired, in order to shield carriers in the bulk silicon from that part of the silicon surface covered by metal where the recombination rate is high. This structure is realized by using n-base (rather than p-base) substrates and by utilizing screen-printed aluminum (rather than silver) emitter contacts. Prototype dendritic web silicon (web) cells (25 cm2 area) with efficiencies up to 13.2% have been produced.  相似文献   

15.
N-type silicon wafers have been found to offer numerous advantages over p-type silicon wafers, such that they are becoming more widely used for manufacturing high-efficiency commercial solar cells. This paper focuses on work done on n-type cell structures with a screen-printed aluminum-alloyed rear junction, laser-doped selective emitter and light-induced plated front contacts to suit large-scale commercial production. However, with such a cell structure we report unusual linear shunting behavior that is only present under illumination but disappears under dark conditions. It was shown that such a phenomenon can be represented by a phototransistor model. In fact, such shunting effects are found to have detrimental impacts on the cell short-circuit current density (Jsc) and fill factor (FF), which limits the efficiency of cells in this work to 12%.  相似文献   

16.
以采用PECVD工艺制备的背面氮化硅薄膜对双面单晶硅太阳电池电致发光(EL)发黑的影响为研究对象进行了实验验证.结果表明,当背面氮化硅薄膜中底层膜的折射率较低时,会导致双面单晶硅太阳电池背电极位置的EL发黑;底层膜和中层膜的折射率过高时,会导致双面单晶硅太阳电池的EL大面积发黑;上层膜边缘的折射率较高时,会导致双面单晶...  相似文献   

17.
A study on the optimisation of front contacts of n-type multicrystalline silicon solar cells is presented. In this study the same cell processing was applied to two types of wafers: electronic grade (EG-Si) and metallurgic grade (MG-Si) silicon. The contact firing temperature was optimised, by measuring the contact resistivity of the front and back contacts for different firing temperatures. The front contacts were improved by deposing silver using an electrochemical process. The solar cells were characterised before and after the silver deposition. For all cells processed the line resistance was reduced by over 90% after the silver deposition. After the contact improvement, EG-Si cells showed an absolute efficiency improvement of 2.6%, but MG-Si cells suffered a reduction on the cell efficiency, an effect related to parasitic shunting existent in these cells.  相似文献   

18.
Very high efficiencies have been demonstrated under concentration with silicon solar cells having interdigitated contacts on the backside. However, only laboratory cells of small dimension have reached very high efficiencies. The need for developing a multilevel metallization technology for back contact concentrator solar cells of large area is demonstrated. The particular features required for such a multilevel interconnection are studied and a process using anodic oxidation of aluminum is presented. Back contact silicon solar cells of 0.64 cm2 have been processed in this technology resulting in 26.2% efficiencies at 10W/cm2 (100 suns AM1.5, 25.5 °C). the highest efficiency reported to date for a solar cell of this area. The one-sun efficiency of this cell is 21.7% (AMI.5, 25.2°C). We propose also a new design for the metallization of back contact cells which allows an increase in the size of the cell without increasing the series resistance.  相似文献   

19.
We report on RISE-EWT (Rear Interdigitated Single Evaporation-Emitter Wrap-Through) solar cells on full area (12.5×12.5 cm2) pseudo square boron doped Czochralski-grown silicon wafers. We investigate the main efficiency optimisation factors of these cells by investigating the dependence of RISE-EWT cell parameters on the base dopant concentration NA. We furthermore detail the effects of large feature sizes in base and emitter regions at the rear of the solar cell and investigate these effects with particular attention to the edge regions. EWT solar cells typically exhibit rather low fill factors. However, our results show that the improved fill factors can be achieved by increasing NA, which in return leads to optimised efficiency values. For our RISE-EWT solar cells made from boron doped Cz-Si wafers, this benefit is maintained even after light-induced degradation. Our investigation of edge area related effects shows the importance of proper cell design in these areas, leading to a further 2.8% absolute improvement in the fill factor. Combining increased base dopant concentration with optimised edge design, we achieve 19.0% efficiency on (12.5×12.5 cm2) boron doped Cz silicon wafers before light-induced degradation, resulting in 18.1% efficiency in the light-degraded state.  相似文献   

20.
Multicrystalline silicon solar cells with porous silicon emitter   总被引:3,自引:0,他引:3  
A review of the application of porous silicon (PS) in multicrystalline silicon solar cell processes is given. The different PS formation processes, structural and optical properties of PS are discussed from the viewpoint of photovoltaics. Special attention is given to the use of PS as an antireflection coating in simplified processing schemes and for simple selective emitter processes as well as to its light trapping and surface passivating capabilities. The optimization of a PS selective emitter formation results in a 14.1% efficiency mc-Si cell processed without texturization, surface passivation or additional ARC deposition. The implementation of a PS selective emitter into an industrially compatible screenprinted solar cell process is made by both the chemical and electrochemical method of PS formation. Different kinds of multicrystalline silicon materials and solar cell processes are used. An efficiency of 13.2% is achieved on a 25 cm2 mc-Si solar cell using the electrochemical technique while the efficiencies in between 12% and 13% are reached for very large (100–164 cm2) commercial mc-Si cells with a PS emitter formed by chemical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号