首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究车削钛合金TC11时切削速度和刀具磨损对已加工表面质量的影响,选用涂层硬质合金刀片CNMG120408在不同切削条件下进行车削试验,分析后刀面磨损量随切削时间的变化规律;对比磨损刀具与新刀具切削的工件表面,观察表面粗糙度、表面形貌、显微硬度以及表层微观组织情况,分析切削速度和刀具磨损对已加工表面质量的影响规律。试验结果表明:在刀具磨损初期,即新刀具切削时,切削速度从60m/min增加到100m/min,刀具磨损程度增大,表面粗糙度值降低,硬化层深度减小,加工硬化程度略微增大,表面塑性变形层深度减小;在刀具磨损终期,不同切削速度下的表面粗糙度增大,表面形貌变差,硬化层深度和加工硬化程度增加,表面变形程度增大,塑性变形层深度增加。  相似文献   

2.
ABSTRACT

A prediction model of cutting force for milling multidirectional laminate of carbon fiber reinforced polymer (CFRP) composites was developed in this article by using an analytical approach. In the predictive model, an equivalent uniform chip thickness was used in the case of orthogonal plane cutting, and the average specific cutting energy was taken as an empirical function of equivalent chip thickness and fiber orientation angle. The parameters in the model were determined by the experimental data. Then, the analytical model of cutting force prediction was validated by the experimental data of multidirectional CFRP laminates, which shows the good reliability of the model established. Furthermore, the cutting force component of flank contact force was correlated with the surface roughness of workpiece and the flank wear of tool in milling UD-CFRP composites. It was found that surface quality as well as flank wear has a co-incident varying trend with the flank contact force, as confirmed by the observations of the machined surfaces and tool wear at different fiber orientations. So, it can be known that low flank contact force be required to reduce surface damage and flank wear.  相似文献   

3.
In this paper, the finite deformation theory and updated Lagrangian formulation were used to describe the oblique cutting process. Either the tool geometrical location condition or the strain energy density constant was combined with the twin node processing method to act as the chip separation criterion. An equation of three-dimensional tool face geometrical limitation was first established to inspect and correct the relation between the chip node and the tool face. And, a three-dimensional finite-difference heat transfer equation was derived. Based on this approach, tool advancement was achieved in displacement increment step by step from the initial tool contact with the workpiece till the formation of steady cutting force. In this case, a large deformation thermo-elastic–plastic finite element model for oblique cutting was established. The mild steel was used as the workpiece, the tool was P20 and the cutting speed was 274.8 mm/s in this article. The chip deformation process and temperature effect on the strain energy density, chip flow angle, cutting force and specific cutting energy were studied first. Finally, the integrity on machined workpiece surface was explored from the variation of residual stresses and temperature distribution on it after cutting. During the chip deformation process, the chip flow angle obtained by this simulation result was approximately equal to the tool inclination angle, which confirmed with the geometrical requirement of Stabler’s criterion. Besides, the simulated specific cutting energy was compared with the experimental specific cutting energy value, the result of which was within acceptable range. It is obvious from the above findings that the model presented in this paper is consistent with the geometrical and mechanical requirements, which verifies the proposed model is acceptable.  相似文献   

4.
A slip-line field model for orthogonal cutting with chip breaker and flank wear has been developed. For a worn tool, this slip-line field includes a primary deformation zone with finite thickness; two secondary shear zones, one along the rake face and the other along the flank face; a predeformation zone; a curled chip; and a flank force system. It is shown that the cutting geometry is completely determined by specifying the rake angle, tool-chip interface friction and the chip breaker constraint. The chip radius of curvature, chip thickness, and the stresses and velocities within the plastic region are readily computed. Grid deformation patterns, calculated with the velocity field determined, demonstrate that the predicted effects of changes in frictional conditions at the tool-chip interface and of the rake angle on chip formation are in accord with experimental observations. The calculated normal stress distribution at the tool-chip interface is in general agreement with previously reported experimental measurements. The model proposed predicts a linear relationship between flank wear and cutting force components. The results also show that non-zero strains occur at and below the machined surface when machining with a worn tool. Severity and depth of deformation below the machined surface increases with increasing flank wear. Forces acting on the chip breaker surface are found to be small and suggest that chip control for automated machining may be feasible with other means.  相似文献   

5.
For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.  相似文献   

6.
Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method (FEM) cutting simulation. In this study, a new three-region friction modeling is proposed to illustrate the material flow mechanism around the friction zone in micro cutting; estimate the stress distributions on the rake, edge, and clearance faces of the tool; and predict the stagnation point location and the minimum cutting thickness. The friction modeling is established by determining the distribution of normal and shear stress. Then, it is applied to calculate the stagnation point location on the edge face and predict the minimum cutting thickness. The stagnation point and the minimum cutting thickness are also observed and illustrated in the FEM simulation. Micro cutting experiments are conducted to validate the accuracy of the friction and the minimum cutting thickness modeling. Comparison results show that the proposed friction model illustrates the relationship between the normal and sheer stress on the tool surface, thereby validating the modeling method of the minimum cutting thickness in micro cutting.  相似文献   

7.
This paper presented a study of the relationship between cutting force and tool flank wear of solid carbide tool during the wet end milling Ti6Al4V. The modeling of 3D cutting force in end milling considering tool flank wear was discussed, which showed that for the given cutting conditions, tool geometries, and workpiece material, cutting force under the tool flank wear effect can be predicted easily and conveniently. In addition, the experimental work of end milling Ti6Al4V with solid carbide tool was developed to investigate the relationship between cutting force and tool flank wear, and comparison between experimental results and predicted results was discussed. The results showed that the proposed mathematical model can help to predict 3D cutting force under the tool flank wear effect with high accuracy.  相似文献   

8.
张昌娟  焦锋  赵波  牛赢 《光学精密工程》2016,24(6):1413-1423
基于激光加热辅助切削和超声椭圆振动切削提出了激光超声复合切削加工工艺。采用聚晶立方氮化硼(PCBN)刀具对YG10硬质合金进行了常规切削,超声椭圆振动切削,激光加热辅助切削和激光超声复合切削对比试验。检测了刀具磨损量、刀具磨损形貌、工件表面粗糙度以及工件表面形貌,并通过扫描电镜(SEM)对刀具磨损区域进行了能谱分析,同时研究了激光超声复合切削硬质合金时PCBN刀具的磨损及其对工件表面质量的影响。最后,与常规切削、超声振动切削及激光加热辅助切削进行了对比试验。结果表明:激光超声复合切削时刀具使用寿命显著增加,加工后的工件表面粗糙度平均值分别降低了79%、60%和64%,且工件表面更加平整光滑。激光超声复合切削硬质合金时,PCBN刀具的前刀面磨损表现为平滑且均匀的月牙洼磨损,后刀面磨损表现为较窄的三角形磨损带和较浅的凹坑和划痕;刀具的失效机理主要为黏接磨损、氧化磨损和磨粒磨损的综合作用。  相似文献   

9.
高强度钢具有优异的机械性能和广阔的应用,但切削加工较为困难,存在加工效率低,加工表面质量差等问题.以AF1410高强度钢为研究对象,应用高速铣削的加工方法,使用涂层硬质合金刀片,对AF1410高强度钢进行了高速铣削实验,研究分析了在高速切削条件下刀具磨损、切削力、切削温度以及已加工表面粗糙度的变化规律.研究发现以TiC...  相似文献   

10.
In precision hard turning, tool flank wear is one of the major factors contributing to the geometric error and thermal damage in a machined workpiece. Tool wear not only directly reduces the part geometry accuracy but also increases the cutting forces drastically. The change in cutting forces causes instability in the tool motion, and in turn, more inaccuracy. There are demands for reliably monitoring the progress of tool wear during a machining process to provide information for both correction of geometric errors and to guarantee the surface integrity of the workpiece. A new method for tool wear monitoring in precision hard turning is presented in this paper. The flank wear of a CBN tool is monitored by feature parameters extracted from the measured passive force, by the use of a force dynamometer. The feature parameters include the passive force level, the frequency energy and the accumulated cutting time. An ANN model was used to integrate these feature parameters in order to obtain more reliable and robust flank wear monitoring. Finally, the results from validation tests indicate that the developed monitoring system is robust and consistent for tool wear monitoring in precision hard turning.  相似文献   

11.
研究表明,切削过程中的刀具磨损与刀面温度、刀/屑和刀/工界面的接触压力及相对滑动速度等切削过程变量有关,借助于有限元分析法可对这些切削过程变量进行仿真预测。基于“差分”磨损模型,提出了一种对切削过程中刀具轮廓磨损变化的预测方法,以硬质合金刀具切削AISI1045材料为例,介绍了该方法的原理和实施步骤,并对刀具前后刀面磨损的预测结果进行了试验验证,分析了预测结果与试验结果存在误差的原因。  相似文献   

12.
The turning process is a standard machining process employed in diverse sectors. However, it produces long continuous chips that can affect the efficiency of the process, accelerate the tooling's wear, or damage the machined surface. As a solution, low frequency vibration cutting synchronizing with the spindle rotation has recently been developed as a new machining method in turning operation. It applies vibrations in the tool feed direction and can synchronously control the applied vibrations and the spindle rotation. It can also effectively divide the long continuous chips generated by the turning process and has the potential to reduce thermo-mechanical load on the tool by periodically enabling the tool to leave the workpiece due to the vibrations. Low frequency vibration cutting, the cutting characteristics of which differ from those of conventional turning, induces residual stresses in the machined surface; however, the properties of these stresses have not yet been studied. Residual stress can have both beneficial and negative effects on the fatigue life of products. While compressive residual stress increases the fatigue life of the product, tensile residual stress facilitates the growth of fine cracks on the product's surface and reduces fatigue life. Therefore, it is important to understand the characteristics of the residual stress developed on a machined surface. In this study, an annealed 0.45% C steel bar was machined via straight turning of the vibration cutting process synchronizing with the spindle rotation, and the residual stress on the finished surface was measured. Particular focus was placed on analyzing the effects of the spindle phase on the characteristics of the residual stress inside the machined surface, especially the effects of the number of vibrations per spindle rotation, D, which is a unique parameter defining the vibration condition. Our results revealed that the residual stress varied depending on the position of the finished surface owing to the change in feed with the spindle phase during the process. Furthermore, D was observed to heavily influence the distribution of the residual stress on the finished surface. By means of adjusting its value, the residual stress value could either fluctuate periodically according to the phase of the workpiece or not fluctuate.  相似文献   

13.
Cutting tool wear is a critical phenomenon which influences the quality of the machined part. In this paper, an attempt has been made to create artificial flank wear using the electrical discharge machining (EDM) process to emulate the actual or real flank wear. The tests were conducted using coated carbide inserts, with and without wear on EN-8 steel, and the acquired data were used to develop artificial neural networks model. Empirical models have been developed using analysis of variance (ANOVA). In order to analyze the response of the system, experiments were carried out for various cutting speeds, depths of cut and feed rates. To increase the confidence limit and reliability of the experimental data, full factorial experimental design (135 experiments) has been carried out. Vibration and strain data during the cutting process are recorded using two accelerometers and one strain gauge bridge. Power spectral analysis was carried out to test the level of significance through regression analysis. Experimental results were analyzed with respect to various depths of cut, feed rates and cutting speeds.  相似文献   

14.
H13淬硬模具钢精车过程的数值模拟   总被引:4,自引:0,他引:4  
闫洪  夏巨谌 《中国机械工程》2005,16(11):985-989
采用热力学耦合有限元方法研究了淬硬钢精车过程中切屑形成规律。运用H13 淬硬模具钢流动应力模型进行数值模拟,考查了H13淬硬模具钢精车过程中工艺参数对工件性能和刀具的影响。结果表明:切削速度愈高,进给量愈小,刀具刀尖半径愈大,则工件加工层上的静水拉应力愈小,表面质量愈好; 淬硬钢精车时径向力起主要作用,大于切削力;切削速度愈大,切削力和径向力则愈小,愈有助于改善工件加工层上的表面质量;切削速度、进给量和刀具刀尖圆角半径愈大,工件和刀具温度愈高,愈易导致刀具前刀面扩散磨损和刀具后刀面磨损。研究结论有助于优化H13淬硬模具钢精车过程中工艺参数选择和改进刀具镶片设计。  相似文献   

15.
The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann’s model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volume-constancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann’s model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann’s model.  相似文献   

16.
针对SiC颗粒硬度高,切削Al/SiCp复合材料时刀具磨损剧烈,本文提出用具有较高硬度、韧性及良好抗磨损能力的WC-7Co制备纳米硬质合金刀具,并对Al/SiCp复合材料进行了切削实验。研究了纳米硬质合金刀具磨损机理和Al/SiCp复合材料的切屑去除机理,以及刀尖处后刀面磨损值。研究认为,纳米硬质合金刀具磨损的机理为SiC颗粒的微切削作用引起的磨料磨损,及SiC颗粒对刀尖刃口的高频、断续冲击引起的微崩刃及微破损;Al/SiCp复合材料的切削实质是断续切削;去除机理为切屑的崩碎去除;纳米硬质合金后刀面磨损值较普通硬质合金小30%~50%。实验表明,纳米硬质合金较普通硬质合金更适于加工Al/SiCp复合材料。  相似文献   

17.
金属正交切削加工过程的有限元分析   总被引:5,自引:0,他引:5  
黄丹  刘成文  郭乙木 《机械强度》2003,25(3):294-297
运用大型通用有限元程序对金属正交切削加工过程进行非线性弹塑性有限元模拟分析,得到不同刀具前角在加工过程中对切屑形状、应力分布、应变分布、残余应力及残余变形的影响,得出刀具前角值与剪切角的关系。计算验证了一些实验结果,结论可供工程应用参考。  相似文献   

18.
The aim of this study is to construct visualization system of stress distribution under ultrasonic vibration-assisted cutting condition in order to investigate the cutting phenomenon. The vibrating cutting edge is considered to be cause of dynamic change of cutting force at ultrasonic frequency. However, many researchers have explained the effect of ultrasonic vibration-assisted cutting by evaluating the time-averaged cutting force, because it is difficult to measure the dynamic cutting force by using dynamometers. In this study, the instantaneous stress distribution on workpiece was visualized by photoelastic method in combination of pulse laser emission synchronized with vibration of cutting edge. Orthogonal cutting test was carried out at low cutting speed relative to vibration speed of insert. A constructed photographic system divided the ultrasonic vibration period of 36.2 μs into 360 points and took one photograph frame at each point. By counting the number of criteria pixels which images the cutting stress, the intermittent cutting condition was evaluated. It was experimentally confirmed that the stress distribution under vibration-assisted condition showed the periodical change synchronized with insert vibration. Because these results are compatible with well-known vibration cutting theories, the imaging system is able to show the periodic change of stress distribution in ultrasonic frequency band. The intermittent cutting condition was affected not only feed speed but also depth of cut. The theory of relative motion between tool and workpiece is insufficient to explain these results. Therefore, remnants formed due to elastic deformation of the workpiece were examined. The vibration cutting dramatically reduced the elastic deformation and the vibration amplitude had effect on the amount of remnant thickness.  相似文献   

19.
为实现在正常生产条件下进行刀具磨损的长期在线监测,提出了基于主轴电流信号和粒子群优化支持向量机模型(PSO-SVM)的刀具磨损状态间接监测方法。首先对数控机床主轴电机电流信号进行分析,将与刀具磨损相关的主轴电流信号多个特征参数和EMD能量熵进行特征融合作为输入特征向量;其次,通过粒子群寻优算法(PSO)对支持向量机模型(SVM)参数进行优化,建立基于主轴电流信号融合特征和PSO-SVM理论的刀具磨损状态识别模型;最后,通过实验采集某立式加工中心主轴在刀具不同磨损状态下电流信号进行验证,并与传统SVM模型、BP神经网络模型进行了对比分析。结果表明,所提出的方法具有较高的准确率和较好的泛化能力。能够实现正常生产条件下对刀具磨损的长期在线监测。  相似文献   

20.
Abstract

The present study focuses on the effects of cutting speed, feed rate and cutting tool material on the machining performance of carbon graphite material. Polycrystalline Diamond (PCD) cutting tools are used in machining experiments and its performance is compared with the tungsten carbide (WC) and Cubic Boron Nitride (CBN) tools. Machining performance criteria such as flank and nose wear and resulting surface topography and roughness of machined parts were studied. This study illustrates that feed rate and cutting tool material play a dominant role in the progressive wear of the cutting tool. The highest feed rate and cutting speed profoundly reduce the tool wear progression. The surface roughness and topography of specimens are remarkably influenced from the tool wear. Major differences are found in the wear mechanisms of PCD and WC and CBN cutting tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号