首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
化学气相渗透(CVI)制备炭/炭复合材料涉及气体扩散和气相沉积2个过程,其工艺控制决定炭纤维坯体的增密速度、热解炭的结构和炭/炭材料的性能.工艺过程的控制主要有4类参数:第一参数包括沉积温度、系统压力、碳源浓度、碳源分压等,第二参数包括均相反应、异相反应和滞留时间等,第三参数为A_s/V_R,也就是沉积基体的表面面积与炉内气体的自由体积之比,以及目前以计算机模拟为主要手段的"第四参数"的研究.在固体表面沉积热解炭的科学研究已经持续了几十年,但至今为止还没有形成一种完善的表面沉积机理,分析了CVI工艺参数发展的趋势,说明了对热解炭微观结构形成机理的认识是一个不断深入的过程.  相似文献   

2.
以AR中间相沥青为原料,采用中间相沥青自发泡法在发泡压力为0.1、3.0MPa,发泡温度为450℃的条件下制备了两种不同体积密度的炭泡沫CF-1和CF-2.将CF-1经过10h和70h化学气相沉积热解炭(CVDPyC)处理后得到炭泡沫CF-1-PC1和CF-1-PC2.测定了炭泡沫的抗压强度和导热系数,利用SEM和光学显微镜观察了炭泡沫的孔结构,考察了CVD PyC对炭泡沫结构及性能的影响.研究结果表明,CVD PyC处理可以增加炭泡沫韧带宽度,封填孔壁微裂纹;沥青炭和热解炭之间无明显界面,结合良好;经过CVD PyC处理后得到的CF-1-PC1和CF-1-PC2的体积密度、抗压强度、导热系数分别为, 0.196g·cm-3、1.89MPa、0.314W·m-1·K-1和0.461g·cm-3、11.93MPa、1.581W·m-1·K-1.  相似文献   

3.
碳源对CVI炭/炭复合材料致密和结构的影响   总被引:2,自引:2,他引:2  
采用自行设计的化学气相渗(CVI)炉以炭毡作为纤维增强体,在坯体内部设计特殊的导电发热层,使坯体内部的温度场、气体反应的中间产物浓度场、电磁场等多元物理场实现耦合,进而达到坯体的快速增密。研究了沉积温度为800℃~1000℃,系统压力0.1kPa~15.0kPa条件下,分别使用石油液化气和丙烯作碳源时对增密速度和沉积热解炭结构的影响;借助偏光显微镜考察了沉积炭的组织结构;用X射线衍射表征了C/C复合材料的石墨化度和微晶尺寸。研究表明:初始密度为0.2g/cm3,尺寸为260mm×60mm×20mm的炭毡坯体沉积20h,经过工艺优化,石油液化气可使坯体增密到1.7g/cm3以上,丙烯可使坯体增密到1.6g/cm3以上;两种碳源沉积所获材料的晶体有序度均随沉积温度的升高和系统压力的降低而升高,其中石油液化气在较高温度(990℃)、较低压力(0.1kPa)下能沉积出织构更高的结构一致的粗糙层结构热解炭;说明不同活化能的复合碳源气体可以发挥与其他物理场梯度的协同耦合作用,有利于提高沉积速度和热解炭的织构。  相似文献   

4.
一种新型C/C复合材料——石墨粉增强热解炭   总被引:1,自引:0,他引:1  
通过热梯度化学气相渗透工艺制备了石墨粉增强热解炭基复合材料(G/C Composites),采用偏光显微镜、SEM观察了其微观组织结构,运用电学和机械实验对其性能进行了研究。结果表明,热解炭能从不同的方位与石墨颗粒包裹性地结合,充分地填充石墨颗粒间的孔隙。G/C复合材料呈现各向同性,密度高(1.85g/cm3),体积电阻率高(148.4μΩ.m),具有优异的力学性能(抗弯强度为50MPa,耐压强度为120MPa)。G/C复合材料的力学性能比纯石墨高一倍,抗压强度与炭毡增强C/C复合材料相当,弯曲强度比炭毡增强C/C复合材料略低。  相似文献   

5.
通过热梯度化学气相渗透工艺制备了石墨粉增强热解炭基复合材料(G/C Composites),采用偏光显微镜、SEM观察了其微观组织结构,运用电学和机械实验对其性能进行了研究.结果表明,热解炭能从不同的方位与石墨颗粒包裹性地结合,充分地填充石墨颗粒间的孔隙.G/C复合材料呈现各向同性,密度高(1.85 g/cm3),体积电阻率高(148.4 μΩ·m),具有优异的力学性能(抗弯强度为50MPa,耐压强度为120MPa).G/C复合材料的力学性能比纯石墨高一倍,抗压强度与炭毡增强C/C复合材料相当,弯曲强度比炭毡增强C/C复合材料略低.  相似文献   

6.
以甲烷为碳源,通过化学气相沉积和化学蒸汽渗透两步法将热解炭填充至碳纳米管阵列间的空隙而制备出碳纳米管阵列/热解炭复合材料。采用扫描电镜和拉曼光谱仪对样品的结构进行表征。结果表明,碳纳米管被热解炭填充和覆盖形成均相的复合膜,其密度增加4倍,同时热解炭已石墨化。  相似文献   

7.
以密度0.47g/cm3的碳毡为预制体,乙醇为前驱体,氮气为载气,在1125℃,压力为20kPa的条件下,用等温压力梯度化学气相渗透法,经114h致密化,制备出密度为1.67g/cm3的炭/炭复合材料.经测试,材料的弯曲强度为137MPa.偏光显微分析显示:该材料各区域沉积的基体热解碳组织结构均为高织构,其消光角为19.5°~20.5°,石墨化处理后测得热解碳的d002为0.3362nm.断口扫描电子显微分析结果也进一步证实获得的热解碳组织为高织构.表明乙醇是一种极具潜力的制备炭/炭复合材料的前驱体.  相似文献   

8.
炭/炭复合材料新型热梯度制备工艺   总被引:1,自引:0,他引:1  
对传统的热梯度化学气相渗透工艺进行了改进.把高热导率(55W/(m·℃))的48k炭纤维束穿入针刺炭毡预制体中心.利用炭纤维束和炭毡预制体热导率(0.15W/(m·℃))的差异,在预制体内部产生热梯度.在900℃~1200℃下,天然气首先在预制体中心的48k炭纤维处热解,致密化沿径向由中心向外部推进,67 h后材料的密度达1.778 g/cm3.研究了炉内输入电压、电阻、致密化时间、沉积层位置等工艺参数对材料性能的影响.通过偏光显微镜和扫描电子显微镜研究了基体热解碳的微观结构,并对炭纤维体积含量为10%的炭/炭试样进行了烧蚀性能测试.  相似文献   

9.
利用化学液气相沉积工艺以煤油为前驱体,采用密度为0.4g/cm3的针刺炭纤维毡为预制体,10h内制备了壁厚为40mm,密度沿径向均匀分布,密度达1.70g/cm3的炭/炭复合材料盘形件.同时还阐明了用于制备炭/炭复合材料的化学液气相沉积工艺原理及工艺过程,利用偏光显微镜观察所得材料的微观组织结构属光滑层结构的热解炭.  相似文献   

10.
采用天然气为前躯体在不同压力下使用化学气相渗积法制备炭/炭复合材料。利用甲烷分解热力学与沉积动力学研究了渗积压力对渗积速率和热解炭组织结构的影响。采用偏光显微镜观察热解炭的组织结构。结果表明:随着渗积压力的增加,初始渗积速率增大;但在渗积后期,渗积速率随着渗积压力的增大而降低,导致在高渗积压力下相同时间制备样品的最终密度降低。热解炭组织结构对渗积压力具有很强的依赖性。在低压(1 kPa)下渗积得到的热解炭基体全部为粗糙层结构。在适中的压力(3kPa,5 kPa,10 kPa)下,以炭纤维为圆心由内到外依次得到各向同性和粗糙层热解炭,整个基体以粗糙层为主。在15 kPa下,得到的热解炭组织结构为各向同性和光滑层组织。  相似文献   

11.
以腐殖酸为前驱体,通过高温热处理制备锂离子电池负极材料。采用扫描电子显微镜(SEM)、X射线衍射(XRD)和电化学测试系统对该材料的形貌、微晶结构和电化学性能进行表征。结果表明,腐殖酸基石墨化材料呈现出较为规整的石墨片层结构,且随着石墨化温度的升高,所得材料的石墨化度也越来越高。腐殖酸基石墨化材料均表现出良好的电化学性能,石墨化温度为2 800℃所制备的石墨化材料的首次放电比容量为356.7 mAh/g,充电比容量为277.6 mAh/g,首次充放电的库仑效率为77.81%,在1C和2C倍率下50次充放电循环后的容量保持率分别高达99.4%、95.9%,是一种理想的锂离子电池负极材料。  相似文献   

12.
热梯度化学气相沉积工艺中避免了等温沉积工艺中预制体表面孔隙过早堵塞的现象,适合制备轴对称的环形、管型件.利用热梯度化学气相沉积工艺制备了炭/炭复合材料管型制件,研究了材料的微观组织结构,测试了其力学性能以及热物理性能,实验结果表明所制备的炭/炭复合材料制件能够满足高温热结构材料的使用要求.  相似文献   

13.
炭泡沫的制备、性能及应用   总被引:1,自引:1,他引:0  
炭泡沫是具有广阔应用前景的新型炭材料,自出现起就成为炭材料研究中的热点.以中间相沥青基炭泡沫为重点,介绍了炭泡沫的发展历史和研究进展,总结了现有炭泡沫制备技术,包括发泡剂发泡法、模板法、中间相沥青自发泡法和限空间法等,概述了炭泡沫的性能和应用前景,并展望了其发展方向.  相似文献   

14.
以MTS/H2为前驱物,采用强制脉冲CVI(FP-CVI)方法,进行了在C纤维表面沉积SiC涂层的研究,并探讨了其工艺过程.结果表明,在1000-1100℃和(5-25)kPa,沉积得到的β—SiC具有明显的(111)面取向,涂层均匀一致,厚度可控.在实验过程中,随着单次驻留时间和脉冲次数的增加,涂层厚度也随之增加,涂层厚度与脉冲次数成非线性关系.当脉冲次数为300时,C纤维表面沉积SiC层后其质量增加达到36.18%.  相似文献   

15.
16.
CVI处理短碳纤维在CFRC中分散性的评价   总被引:3,自引:0,他引:3  
碳纤维增强水泥基复合材料(CFRC)是一种新发展起来的、很有潜力的功能材料.丙烯作前驱体,对短碳纤维在高温下(900~1300℃)进行100个小时左右的化学气相浸渍(CVI)表面处理,丙烯在高温下分解,生成热解碳,沉积在碳纤维表面.借助超声波预分散技术及新型分散剂羟乙基纤维素(hydroxyethyl cellulose,HEC)和超细颗粒硅灰的分散作用,实现了CVI处理碳纤维在水泥基体中的均匀分散.HEC水溶液的质量分数控制在1.56~1.77%之间为宜.分别运用扫描电镜法(SEM)、新拌料浆法(FM)、硬化试件电阻率测试法(ERM)及模拟试验法(SE)四种方法评价了CVI处理后短碳纤维的分散性.每种方法均有自身的优缺点和适应环境,四种方法中,模拟试验法(SE)是评价制备CFRC复合材料前期、碳纤维第一步分散的最方便的方法,此法不仅可节约时间和大量的原材料,而且可预测制备CFRC过程中应选择何种分散剂及碳纤维第二步分散的情况.  相似文献   

17.
18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号