首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semiconducting carbon nanotubes (CNTs) are attractive as channel material for field-effect transistors due to their high carrier mobility. In this paper we show that a local CNT gate can provide a significant improvement in the subthreshold slope of a CNT transistor compared to back gate switching and provide gate delays as low as 5?ps. The CNT gated CNT transistor devices are fabricated using a two-step chemical vapour deposition technique. The measured transfer characteristics are in very good agreement with theoretical modelling results that provide confirmation of the operating principle of the transistors. Gate delays below 2?ps should be readily achievable by reducing the thickness of the gate dielectric.  相似文献   

2.
3.
Acid functionalized single walled carbon nanotubes were covalently grafted to chitosan by first reacting the oxidized carbon nanotubes with thionyl chloride to form acyl-chlorinated carbon nanotubes which are subsequently dispersed in chitosan and covalently grated to form composite material, CNT–chitosan, 1, which was washed several times to remove un-reacted materials. This composite has been characterized by FTIR, 13C NMR, TGA, SEM and TEM and has been shown to exhibit enhanced thermal stability. The reaction of 1, with poly lactic acid has also been accomplished to yield CNTchitosan–g-poly(LA), 2 and fully characterized by the above techniques. Results showed covalent attachment of chitosan and chitosan–poly lactic acid to the carbon nanotubes.  相似文献   

4.
5.
6.
Dense borosilicate glass matrix composites containing up to 3 wt% of multiwalled carbon nanotubes were produced by a sol–gel process. The three different silicate precursors employed (tetramethylsilane (TMOS), methyltriethoxysilane (MTES) and methyltrimethoxysilane (MTMS)) yielded transparent xerogels which were subsequently crushed and densified by hot pressing at 800 °C. The dispersion of the carbon nanotubes was aided by using an organic–inorganic binder (3-aminopropyl triethoxysilane) which limited flocculation of the CNTs in the silica sol. After densification, the borosilicate glass composites containing up to 2 wt% CNTs showed significant improvements in hardness and compression strength, as well as thermal conductivity, whilst percolation effects lead to a dramatic increase in electrical conductivity above 1 wt%. This simple approach to disperse CNTs into a technical silicate glass matrix via the sol–gel process focusses specifically on the borosilicate system, but the procedure can be applied to produce other inorganic matrix composites containing CNTs.  相似文献   

7.
A double wall carbon nanotube oscillator near an infinite surface with the nanotube axis perpendicular to the surface is investigated. The oscillatory motion is governed in part by the van der Waals forces in the system, and we use the Lennard-Jones approximation for their calculation. In addition, friction losses due to the proximity of the oscillating nanotube near the infinite surface are taken into account using a phenomenological model. Newton's equation is solved and the oscillatory motion is studied as a function of the nanotube-surface distance, the nanotube length, and the initial extrusion of the moving nanotube. A practical device for surface profiling is also proposed.  相似文献   

8.
《Composites Part B》2002,33(4):263-277
Since the discovery of carbon nanotubes at the beginning of the last decade, extensive research related to the nanotubes in the fields of chemistry, physics, materials science and engineering, and electrical and electronic engineering has been found increasingly. The nanotubes, having an extreme small physical size (diameter ≈1 nm) and many unique mechanical and electrical properties depending on its hexagonal lattice arrangement and chiral vector have been appreciated as ideal fibres for nanocomposite structures. It has been reported that the nanotubes own a remarkable mechanical properties with theoretical Young's modulus and tensile strength as high as 1 TPa and 200 GPa, respectively. Since the nanotubes are highly chemical insert and able to sustain a high strain (10–30%) without breakage, it could be foreseen that nanotube-related structures could be designed for nanoinstrument to create ultra-small electronic circuits and used as strong, light and high toughness fibres for nanocomposite structures. In this paper, recent researches and applications on carbon nanotubes and nanotube composites are reviewed. The interfacial bonding properties, mechanical performance and reliability of nanotube/polymer composites will be discussed.  相似文献   

9.
Polypyrrole (PPR)–carbon nanotube (CNT) films were prepared by an electrodeposition method, combining PPR electropolymerization and anaphoresis of CNT. PPR polymerization experiments showed advantages of a dopant from the catechol family for the deposition of PPR films at reduced electrode potentials. The method allowed the formation of adherent films on stainless steel substrates. The amphiphilic molecules with steroid-like structures, such as carbenoxolone disodium salt, glycyrrhizic acid, ammonium salt, and sodium taurodeoxycholate, were used for dispersion and charging of CNT. The new dispersing agents showed outstanding dispersion ability. In addition to dispersing properties, electrodeposition experiments revealed film-forming properties of carbenoxolone and ability to form pure carbenoxolone or carbenoxolone–CNT films. The PPR–CNT films formed using carbenoxolone disodium salt, glycyrrhizic acid ammonium salt, and sodium taurodeoxycholate showed diverse microstructural features. The dispersion and deposition mechanisms were discussed.  相似文献   

10.
Single-walled carbon nanotubes (SWCNTs) were incorporated at low loading (up to ∼1 wt%) into an unfilled aerospace-grade epoxy system, to impart electrical conductivity while maintaining structural bonding capability, as a route for development of a structural and conductive adhesive. At these low SWCNT loadings the tensile properties were maintained or improved, while strength decreased in a higher loading case. The structural bonding performance of composite-to-composite joints, evaluated in lap-shear and peel tests, was reasonably maintained for adhesives containing 0.5 wt% or 1 wt% SWCNTs. In the case of the 0.5 wt% SWCNT–adhesive, peel and lap-shear strength were unchanged while the addition of 1 wt% resulted in 30% increase of peel strength but the lap-shear strength was reduced by 10–15%. For 1 wt% SWCNT–adhesives, conductivities as high as 101 S m1 and typically ∼103 S m1 were achieved. Joint electrical resistance measured between aluminum adherends was larger than predicted by the bulk conductivity, but was reduced by a post-treatment step resulting in apparent joint conductivities within one order of magnitude of the bulk samples.  相似文献   

11.
A study has been made of a concept of ‘healing’ coatings applied onto the brittle fibre surface to reduce the stress concentrations and thus to improve the reinforcing efficiency in a composite. Coatings made from neat epoxy and carbon nanotube (CNT) reinforced epoxy nanocomposite were applied onto the individual glass fibres as well as rovings. It is shown that the 0.3 wt.% CNT–epoxy nanocomposite coating gave rise to a significant increase in tensile strength of the single fibre for all gauge lengths, better than the neat epoxy coating. The results on glass fibre roving also indicated a clear beneficial effect of nanocomposite impregnation on tensile strength. The rovings impregnated with the CNT nanocomposite exhibited a more uniform strength distribution and higher strengths than those impregnated with the neat epoxy. The changes in prevailing failure mechanisms influenced by the epoxy and nanocomposite coatings have been identified.  相似文献   

12.
Highly porous 45S5 Bioglass®-based foam scaffolds were coated with multi-walled carbon nanotubes (CNT) by electrophoretic deposition (EPD) technique. By placing the scaffolds in between the two electrodes of the EPD cell, a CNT coating of up to 1 μm thickness was achieved on the surface throughout the whole three dimensional (3D) matrix. A 0.5 wt% CNT aqueous suspension was used and EPD was carried out at 2.8 V for 10 mins. The compression strength of this CNT/Bioglass® composite was measured to be 0.70 MPa. Moreover the increased electrical conductivity of the composite with CNT coating was confirmed. The scaffolds have the potential for applications in bone tissue engineering due to the high bioactivity, nano-roughness in 3D and electrical conductivity provided by the addition of CNT.  相似文献   

13.
An investigation is conducted on the effect of the hybrid of multi-wall carbon nanotubes (MWCNTs) and graphene oxide (GO) nanosheets on the tribological performance of epoxy composites at low GO weight fractions of 0.05–0.5 phr. The MWCNT amount is kept constant at 0.5 phr, which is typical for CNT/epoxy composites with enhanced mechanical properties. Friction and wear tests against smooth steel show that the introduction of 0.5 phr MWCNTs into the epoxy matrix increases the friction coefficient and decreases the specific wear rate. When testing the tribological performance of MWCNT/GO hybrids, it is shown that at a high GO amount of 0.5 phr, the friction coefficient is decreased below that of the neat matrix whereas the wear rate is increased above that of the neat matrix. At an optimal hybrid formulation, i.e., 0.5 phr MWCNTs and 0.1 phr GO, a further increase in the friction coefficient and a further reduction in the specific wear rate are observed. The specific wear rate is reduced by about 40% down to a factor of 11 relative to the neat epoxy when the GO content is 0.1 phr.  相似文献   

14.
In the present study, montmorillonite–carbon nanotube hybrids were synthesized by catalytic decomposition of ethylene over iron montmorillonite surfaces modified by different experimental procedures. SEM and STEM analyses reveal the presence of carbon nanotubes attached to the clay layers and X-ray diffraction results indicate that sodium montmorillonite layers were intercalated with iron species during the ion-exchange processes and further delaminated due to the growth of carbon nanotubes. It is expected that montmorillonite–carbon nanotube hybrids will be beneficiary for improvement of mechanical properties in polymer nanocomposites due to their pre-exfoliated internal structure and the presence of surface carbon nanotubes which may significantly enhance reinforcing effect.  相似文献   

15.
Graphene, Carbon Nanotubes and their hybrids are receiving considerable attention in energy storage devices due to their unique properties. The present study reports the synthesis of Graphene–Carbon Nanotube hybrid having variable ratios of the constituting nanomaterials by employing two different chemical routes to explore their potential in energy storage devices. To study the structure and morphology of synthesized nanomaterials, all samples were characterized by high resolution imaging and spectroscopy techniques. Electrical conductivity of synthesized Graphene-Carbon Nanotube hybrid, graphene oxide and carbon nanotubes was measured by two probe method to study whether the conductivity of hybrid is greater than that of graphene and carbon nanotubes. It was observed that hybrid exhibited excellent stability due to strong π-π interaction between carbon nanotubes and graphene oxide sheets. The maximum electrical conductivity was obtained for the hybrid in which amount of graphene oxide was more than that of multiwalled carbon nanotubes. Moreover, the results of electrical conductivity demonstrated that the structure of hybrid plays significant role in improving its properties.  相似文献   

16.
Various materials have been found to “catalyze” carbon nanotube growth in chemical vapor deposition (CVD) when they become nano-sized particles. These involve not only metals, such as Pd, Pt, Au, Ag, and Cu, but also semiconductors, such as Si, Ge, and SiC. Alumina and diamond nanoparticles also produce carbon nanotubes. These “catalysts”, which are better called “seeds”, can be categorized into two types: one type forms a eutectic liquid or highly-mobile alloy with carbon, and carbon atoms precipitate from the eutectic alloy; the other type remains as a solid phase and form a carbon surface layer during CVD growth. In this paper, we review recent studies of SWCNT growth with these non-iron-group materials and highlight the mechanisms involved.   相似文献   

17.
18.
Liu C  Wang Y  Liu J  Zheng L  Su L  Xu J 《Applied optics》2011,50(19):3229-3232
Transmission-type single-walled carbon nanotube saturable absorbers were successfully fabricated and used in a CW passively mode-locked Yb:Y?SiO? laser for the first time to our knowledge. We obtained pulses as short as 1.1 ps around a center wavelength of 1058 nm. The average output power of 1.1 W was achieved at the repetition of 96.7 MHz; the corresponding peak power and energy of a single pulse was 10.3 kW and 11.4 nJ, respectively.  相似文献   

19.
Amorphous carbon nanotubes (α-CNTs) have been synthesized by heating a mixture of ferrocene and ammonium chloride at a low temperature of 200 °C. Surface morphological studies reveal that the as-prepared nanotubes are straight tubular structures with open ends. The Raman spectra reveal the presence of defects in the nanotubes. Both chemical oxidation and hybridization treatments result in hybridization between α-CNTs and cadmium selenide quantum dots (CdSe QDs), giving an increase in the average outer diameter, surface roughness and the number of defects for the α-CNTs. The decreasing outer diameter size of nanotubes reduces the permittivity contribution in overall due to size quantization effect. Chemical functionalization initiated by the oxidation and attachment of CdSe QDs due to hybridization improve the dispersion stability and permittivity of α-CNTs. The α-CNTs–CdSe QD hybrids have the potential for electromagnetic and microwave absorption applications as they exhibit a high imaginary component of permittivity (dielectric loss).  相似文献   

20.
Carbon nanotubes (CNTs) are among the strongest materials known, making their use in composites, a field with very high commercial potential for structural applications. Many of the methods reported to date to form metal composites have an excessive number of steps. Here, a facile chemical vapor deposition method to infiltrate multiwalled carbon nanotubes directly into pure stainless steel pellets and pellets from stainless steel mixed with iron particles is reported. The iron powder was dry-coated before vapor filtration with nanosized iron oxide catalyst precursor, a critical step to increase catalytic activity. This CVD method results in a substantial increase in the elastic modulus, yield strength, and hardness by 47, 104, and over 93 %, respectively, for composites made from mixed, dry-coated particles compared with corresponding control samples without nanotubes. This is the highest enhancement reported, to the best of our knowledge, of the mechanical properties for a metal–nanotube composite prepared using a metal other than copper. The addition of CNTs results in a relatively small increase in corrosion rate which can be mitigated to negligible levels by coating with a thin epoxy–carbon nanotube composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号