首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coexistence issues between IEEE 802.11b wireless communication networks and IEEE 802.15.4 wireless sensor networks, operating over the 2.4-GHz industrial, scientific, and medical band, are assessed. In particular, meaningful experiments that are performed through a suitable testbed are presented. Such experiments involve both the physical layer, through measurements of channel power and the SIR, and the network/transport layer, by means of packet loss ratio estimations. Different configurations of the testbed are considered; major characteristics, such as the packet rate, the packet size, the SIR, and the network topology, are varied. The purpose of this paper is to gain helpful information and hints to efficiently face coexistence problems between such networks and optimize their setup in some real-life conditions. Details concerning the testbed, the measurement procedure, and the performed experiments are provided.   相似文献   

2.
Kim  S. Cha  J. Ma  J. 《Communications, IET》2009,3(12):1934-1947
The IEEE 802.11 distributed coordination function (DCF) employs a carrier sensing mechanism, a simple and effective mechanism to mitigate collisions in wireless networks. But the carrier sensing mechanism is inefficient in terms of shared channel use because an overcautious channel assessment approach is used to estimate interference at a receiver. A DCF node simply blocks its transmission when it senses that the channel is busy. However, in many cases this channel assessing node?s own transmission may not generate enough interference to disrupt the ongoing transmission at the receiver. This overcautious channel assessment unnecessarily blocks transmission attempts, and thus degrades the overall network throughput. To avoid this unnecessary blocking, the authors propose a spatial reuse DCF (SRDCF), which utilises location information and transmission parameters to make accurate channel assessments and to permit concurrent transmissions by adjusting the transmission power. SRDCF also resolves the contention between opportunistic concurrent transmissions with a secondary backoff counter. Consequently, the proposed scheme improves the overall network throughput because of more concurrent transmissions. The authors theoretically analyse the performance enhancement of SRDCF over the original IEEE 802.11 DCF by using a Markov chain model and verify it through simulations.  相似文献   

3.
The carrier-sensing multiple access with collision avoidance (CSMA/CA) protocol is the most well-known medium access control (MAC) protocol for wireless networks. Both the distributed coordination function (DCF) defined in IEEE 802.11 and the MAC layer defined in IEEE 802.15.4 are based on the CSMA/CA protocol. Nevertheless, these two standards have quite different carrier-sensing mechanisms. Different to continuous carrier sensing in DCF, an IEEE 802.15.4 node only senses the channel once just after a backoff. Sensing-once mechanism can reduce the computation loading on the CPU. However, it significantly increases the probability of failure transmission because a node is not fully aware of channel activity. This paper first proposes a software architecture integrating proper hardware features for designing a DCF-based MAC protocol and then successfully implements it on a low-power transceiver. In addition, this paper conducts experiments in a star topology network to compare the performance of the above DCF-MAC protocol with the IEEE 802.15.4 MAC protocol. Experimental results show that, without continuous sensing, the IEEE 802.15.4 network suffers a high transmission failure probability as the network size increases. Consequently, the proposed DCF-based MAC protocol outperforms the IEEE 802.15.4 MAC protocol in terms of packet loss probability and throughput.  相似文献   

4.
The IEEE 802.11n standard has provided prominent features that greatly contribute to ubiquitous wireless networks. Over the last ten years, voice over IP (VoIP) has become widespread around the globe owing to its low-cost or even free call rate. The combination of these technologies (VoIP and wireless) has become desirable and inevitable for organizations. However, VoIP faces a bandwidth utilization issue when working with 802.11 wireless networks. The bandwidth utilization is inefficient on the grounds that (i) 80 bytes of 802.11/RTP/UDP/IP header is appended to 10–730 bytes of VoIP payload and (ii) 765 µs waiting intervals follow each 802.11 VoIP frame. Without considering the quality requirements of a VoIP call, be including frame aggregation in the IEEE 802.11n standard has been suggested as a solution for the bandwidth utilization issue. Consequently, several aggregation methods have been proposed to handle the quality requirements of VoIP calls when carried over an IEEE 802.11n wireless network. In this survey, we analyze the existing aggregation methods of VoIP over the A-MSDU IEEE 802.11n wireless standard. The survey provides researchers with a detailed analysis of the bandwidth utilization issue concerning the A-MSDU 802.11n standard, discussion of the main approaches of frame aggregation methods and existing aggregation methods, elaboration of the impact of frame aggregation methods on network performance and VoIP call quality, and suggestion of new areas to be investigated in conjunction with frame aggregation. The survey contributes by offering guidelines to design an appropriate, reliable, and robust aggregation method of VoIP over 802.11n standard.  相似文献   

5.
Data transmission in ad hoc networks involves interactions between medium access control (MAC)-layer protocols and data forwarding along network-layer paths. These interactions have been shown to have a significant impact on the performance of a system. This impact on multipath data transmission over multihop IEEE 802.11 MAC-based ad hoc networks is assessed; analysis is from a cross-layer perspective. Both MAC layer protocols and network-layer data forwarding are taken into account in the system models. The frame service time at source in a 802.11 MAC-based multipath data transmission system under unsaturated conditions is studied. Analytical models are developed for two packet generation schemes (round robin and batch) with a Poisson frame arrival process. Moreover, an analytical model is developed to investigate the throughput of a multipath transmission system in 802.11-based multihop wireless networks. Two methods are proposed to estimate the impact of cross-layer interactions on the frame service time in such a system. Two bounds of the system throughput are obtained based on these estimation methods. These models are validated by means of simulation under various scenarios.  相似文献   

6.
Direction finding in IEEE802.11 wireless networks   总被引:1,自引:0,他引:1  
A novel direction-finding method for stations of IEEE802.11 wireless local area networks is presented in this paper. The method uses a switched beam array for determining the direction of arrival of the incident electromagnetic field in a time efficient way and associates certain medium access control (MAC) layer functions with different radiation patterns of the switched antenna array, in order to determine the proper orientation of directional beams on both entities of a communication link. The application of the proposed method to an IEEE802.11 wireless network is presented and it is depicted how the method improves the network performance without requiring any modifications to the existing MAC protocol.  相似文献   

7.
It is widely believed that IEEE 802.11 standard is aimed mainly for fixed indoor wireless local area networks and is not suited for mobile applications, even though the IEEE 802.11b systems may work in either infrastructure mode or ad hoc mode. The impact of node mobility on ad hoc network performance has already been studied intensively, but these studies mostly do not consider temporal fluctuations of the mobile wireless channel due to the Doppler shift. An investigation of the mobility impact on the performance of IEEE 802.11b ad hoc systems with Rician/Rayleigh fading under different node velocities is presented. A comprehensive and in-depth analysis of the impacts of a multitude of different signal distortions on an IEEE 802.11b system performance is also presented. Specifically, the authors study the bit-error rate performances with respect to node velocities for different modulation schemes. The simulation results show that, owing to its extremely low implementation and deployment cost, the current IEEE 802.11b standard has its potential to be deployed in a mobile ad hoc environment if the line-of-sight path between transmitter and receiver exists.  相似文献   

8.
The performance of a new pointer-based medium-access control protocol that was designed to significantly improve the energy efficiency of user terminals in quality-of-service-enabled wireless local area networks was analysed. The new protocol, pointer- controlled slot allocation and resynchronisation protocol (PCSARe), is based on the hybrid coordination function-controlled channel access mode of the IEEE 802.11e standard. PCSARe reduces energy consumption by removing the need for power-saving stations to remain awake for channel listening. Discrete event network simulations were performed to compare the performance of PCSARe with the non-automatic power save delivery (APSD) and scheduled-APSD power- saving modes of IEEE 802.11e. The simulation results show a demonstrable improvement in energy efficiency without significant reduction in performance when using PCSARe. For a wireless network consisting of an access point and eight stations in power-saving mode, the energy saving was up to 39% when using PCSARe instead of IEEE 802.11e non-APSD. The results also show that PCSARe offers significantly reduced uplink access delay over IEEE 802.11e non-APSD, while modestly improving the uplink throughput. Furthermore, although both had the same energy consumption, PCSARe gave a 25% reduction in downlink access delay compared with IEEE 802.11e S-APSD.  相似文献   

9.
Kuo  W.-K. 《Communications, IET》2007,1(2):165-172
Use of IEEE 802.11 wireless local area networks (WLANs) as an extension to existing wired networks, offering both mobility and portability in a residential or office environment, is growing at an unprecedented rate. One of the critical limitations of current WLANs is the limited energy storage of mobile devices, and the design of energy-efficient protocols for WLANs has therefore become an area of intensive research. An analytical framework to study the energy consumption and energy efficiency of IEEE 802.11a WLANs is proposed. The energy consumption by considering the interactions between IEEE 802.11a PHY and MAC layers is modelled. Simulation results demonstrate that the theoretical model is accurate in predicting the energy efficiency over a wide range of scenarios. In addition, the effects of different PHY and MAC layer parameters on energy efficiency of IEEE 802.11a WLANs are investigated, as are the effects of different parameters on energy efficiency.  相似文献   

10.
The authors propose a new analytical model based on BCMP closed queueing networks in order to evaluate the performance of IEEE 802.11 DCF MAC protocol when all nodes are in the transmission range of each other, that is, a single hop wireless ad hoc network. By the proposed model, some performance metrics such as saturation and non-saturation throughput, distributions of channel access delay and the number of packets in the MAC buffer are derived. An extension of the proposed model is used for the analysis of IEEE 802.11e EDCA and the same performance metrics are evaluated for this protocol. Analytical results on IEEE 802.11e prove that differentiation in service is possible and channel share for each service type may be well assigned by tuning the MAC protocol parameters. Simulation results show consistency with our analytical results.  相似文献   

11.
Ng  P.C. Edwards  D.J. Liew  S.C. 《Communications, IET》2009,3(11):1736-1746
This study attempts to exploit the potential of link directionality to increase the achievable capacities of ad hoc networks. When an IEEE 802.11 ad hoc network achieves capacity C by using a single channel, the targeted capacity by using two channels should be 2C. However, most of the dual-channel 802.11 protocols proposed in the literature appear only to be able to achieve less than 60% of the 2C targeted capacity. The authors thus propose a link-directionality-based dual-channel medium access control protocol in an attempt to double the capacities of networks using the single-channel IEEE 802.11 protocol. The main idea is to assign channels according to link directionality to allow a link to transmit simultaneously within the carrier-sensing region of another link provided that these transmissions do not interfere with each other. Simulations show that our proposed scheme can achieve more than 85% of our targeted capacities, 0.85 X 2C = 1.7C, in large-scale random topologies. In lattice and irregular topologies, the throughput is boosted up to 2.83C and 2.13C, respectively. An approach for capacity analysis is also introduced to determine the throughput improvements that can be achieved by our proposed protocol. We believe using link directionality for channel allocations is a key step that yields significant potential for multiplying the capacity of ad hoc networks.  相似文献   

12.
IEEE 1588 is a new standard to synchronize independent clocks running on separate nodes of a distributed measurement and control system. It is intended for high-accuracy implementations on compact systems such as a single subnet. This paper examines potential accuracy limitations introduced by the physical layer of the IEEE 802.11b wireless local area network. Experimental results are presented that show that these limitations do not preclude clock-synchronization accuracy of several hundred nanoseconds.  相似文献   

13.
The authors focus on a wireless mesh network, that is, an ad hoc IEEE 802.11-based network whose nodes are either user devices or Access Points providing access to the mesh network or to the Internet. By relying on some work done within the IEEE 802.11s TG, the network nodes can use one control channel and one or more data channels, each on separate frequencies. Then, some problems related to channel access are identified and a MAC scheme is proposed that specifically addresses the problem of hidden terminals and the problem of coexisting control and data traffic on different frequency channels. An analytical model of the MAC scheme is presented and validated by using the Omnet++ simulator. Through the developed model, we show that our solution achieves very good performance both in regular and in very fragmented mesh topologies, and it significantly outperforms the standard 802.11 solution.  相似文献   

14.
Liu  J.-S. Lin  C.-H.R. 《Communications, IET》2009,3(6):1050-1060
As extensions in the emerging 802.11e for quality-of-service provisioning, burst transmission and the acknowledgment aggregation are the two important operations to improve the channel efficiency of IEEE 802.11-based wireless local area networks (WLANs). However, only a few works have been done on these operations, and usually assumed the networks to be operated under saturated traffic conditions and error-free channels. In practice, the assumptions may not be valid because real-time traffic with proper rate control will not saturate the networks and the channel is generally error-prone. Thus, the authors consider two new methods resulted from these operations and analyse their performance under unsaturated and error-prone WLANs, with a Markov chain model. The results show that the new methods generally have better throughput than the conventional IEEE 802.11 medium access control (MAC) in the WLANs.  相似文献   

15.
Can frequency-domain analysis be made from time-domain measurements taken over networks with poor temporal characteristics, that is, poor or no guarantees about when commands or data will be delivered, such as the public Internet? Our answer to this question is ldquoyes.rdquo Provided that the times that samples are taken are measured accurately, Fourier analysis can be performed, even when the samples are taken at nonuniform intervals. Due to the tendency of packet delays in networks to have long-tailed probability distributions, it is also desirable not to make assumptions concerning the probability distribution of the time intervals between samples. We show that the combination of network time synchronization and stabilization of measurement apparatus using the IEEE 1588 Protocol and the methods for Fourier analysis of nonuniformly spaced data from the literature are sufficient to provide spectra from measurements taken with networked sensors. The key steps of our method are an accurate timestamping of the measurements followed by a Fourier transform. The Fourier transform may be accomplished by either resampling the measurements into a constant rate so that fast Fourier transforms may be used or performing a least squares fit of a sine/cosine basis to the data. Both approaches were tested using measurements taken over the public Internet using measurement apparatus synchronized using IEEE 1588.  相似文献   

16.
Mission critical Machine-type Communication (mcMTC), also referred to as Ultra-reliable Low Latency Communication (URLLC), has become a research hotspot. It is primarily characterized by communication that provides ultra-high reliability and very low latency to concurrently transmit short commands to a massive number of connected devices. While the reduction in physical (PHY) layer overhead and improvement in channel coding techniques are pivotal in reducing latency and improving reliability, the current wireless standards dedicated to support mcMTC rely heavily on adopting the bottom layers of general-purpose wireless standards and customizing only the upper layers. The mcMTC has a significant technical impact on the design of all layers of the communication protocol stack. In this paper, an innovative bottom-up approach has been proposed for mcMTC applications through PHY layer targeted at improving the transmission reliability by implementing ultra-reliable channel coding scheme in the PHY layer of IEEE 802.11a standard bearing in mind short packet transmission system. To achieve this aim, we analyzed and compared the channel coding performance of convolutional codes (CCs), low-density parity-check (LDPC) codes, and polar codes in wireless network on the condition of short data packet transmission. The Viterbi decoding algorithm (VA), logarithmic belief propagation (Log-BP) algorithm, and cyclic redundancy check (CRC) successive cancellation list (SCL) (CRC-SCL) decoding algorithm were adopted to CC, LDPC codes, and polar codes, respectively. Consequently, a new PHY layer for mcMTC has been proposed. The reliability of the proposed approach has been validated by simulation in terms of Bit error rate (BER) and packet error rate (PER) vs. signal-to-noise ratio (SNR). The simulation results demonstrate that the reliability of IEEE 802.11a standard has been significantly improved to be at PER = 10−5 or even better with the implementation of polar codes. The results also show that the general-purpose wireless networks are prominent in providing short packet mcMTC with the modification needed.  相似文献   

17.
Lin  Y.-C. Lai  W.K. 《Communications, IET》2007,1(5):846-857
In infrastructure wireless networks, the wireless hop can be considered as another hop of the transmission path. With the rapid growth of wireless traffics, the future wireless network is expected to provide services for heterogeneous data traffics with different quality of service (QoS) requirements. Most proposed schemes do not have adaptive mechanisms to deal with the environment changes. In real situation, bandwidths, error rates and loss rates of wireless links vary frequently. We will base on the differentiated service model and propose a wireless differentiation (WD) scheme for user datagram protocol (UDP) flows and a wireless differentiation with prioritised ACK scheme for connections with transmission control protocol (TCP) flows. Both schemes provide QoS support for IEEE 802.11b and do not change the basic access mechanism of IEEE 802.11b.  相似文献   

18.
Wang  C. Lin  T. Chen  J.-L. 《Communications, IET》2007,1(5):858-865
The authors address the problem of providing fair multimedia quality-of-service (QoS) in IEEE 802.11 distributed co-ordination function-based wireless local area networks in the infrastructure mode where mobile hosts experience heterogeneous channel conditions due to mobility and fading effects. It was observed that unequal link qualities can pose significant unfairness of channel sharing, which may thereby lead to the degradation of multimedia QoS performed in adverse conditions. A cross-layer adaptation scheme that provides fair QoS by online adjusting the multidimensional medium access control layer backoff parameters in accordance with the application-layer QoS requirements as well as the physical-layer channel conditions was proposed. The solution is based on an optimisation approach, which utilises neural networks to learn the cross-layer function. Simulation results demonstrate that the proposed adaptation scheme can tackle heterogeneous channel conditions and random joining (or leaving) of hosts to achieve fair QoS in terms of throughput and packet delay.  相似文献   

19.
Body area network for wireless patient monitoring   总被引:1,自引:0,他引:1  
Patient data monitoring is a key issue for health and disease management. The use of wireless sensors within a body area network (BAN) makes this task seamless and easy. A BAN system is presented, which allows the connectivity of a wide range of heterogeneous body sensors to a portable hub device that is connectable to external networks (IEEE 802.11, GPRS). This BAN is based on the use of Zigbee/IEEE 802.15.4 standard technology and off-the-shelf modules. It is currently being used at the European level for the detection and the prediction of the human physiological state in relation to wakefulness, fatigue, and stress applications in which users carrying out daily activities are monitored in an unobtrusive and comfortable way. Characterised by its low power consumption, low cost, and ability to connect a wide range of heterogeneous sensors, this system can substantially improve the performance of different services, especially those that are health related.  相似文献   

20.
Kuo  W.-K. 《Communications, IET》2008,2(1):92-97
As the demand for broadband multimedia wireless is increasing, improving the quality of service (QoS) of the widely deployed IEEE 802.11 wireless LAN has become crucial. In order to attain the QoS required by a wide range of applications, the IEEE 802.11 working group has denned a new standard - the IEEE 802.lie. However, very limited work has been performed to address the QoS transmission problem of real-time video over IEEE 802.11e. A novel measurement-based dynamic transmission opportunity (MBDTXOP) scheme is proposed, which adaptively allocates resources to a variable bit rate (VBR) video on the basis of the estimation of future traffic demand to support efficient QoS transmission of VBR video. The novelty of the proposed scheme, when compared with existing methods, lies in estimating the required network resources by exploiting the characteristics of digital video; this capability enables the MBDTXOP scheme to substantially increase network utilisation while preserving the required QoS for the transmission of VBR video. Simulations comparing the proposed scheme with other mechanisms clearly demonstrate the outstanding performance of the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号