首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
田里  王永庆 《核动力工程》2001,22(6):554-558
采用平准化贴现产水成本法和最新的海水淡化经济评价软件(DEEP1.1),对东南亚地区核能海水淡化和化石能源海水淡化大量方案的经济竞争性进行了比较研究。结果表明,核能海水淡化具有较强的经济竞争性,其竞争性普遍存在于反渗透膜(RO)法、多效蒸馏(MED)法和多级闪蒸(MSF)法3种淡化技术中。淡化水成本由于所采用的淡化技术和水厂规模的不同,具有很大的差别,变化范围为0.56~1.89$·m-3。其中,RO法最便宜,MSF法最贵。影响其经济竞争性的敏感因素依次为:贴现率、水厂规模、海水温度与海水总可溶固体物(TDS)含量、化石燃料价格和能源厂比投资,与基准方案相比,水成本的变化率最高可达19.3%。  相似文献   

2.
本文通过平准化发电成本的方法,以燃料循环作为研究对象,对行波堆一次通过式燃料循环和二次通过式燃料循环的经济性进行了研究,并选取10个重要的经济和技术参数进行成本敏感性分析。研究结果表明,行波堆的平准化发电成本低于现有压水堆和快堆,其中,行波堆一次通过式燃料循环方式的平准化发电成本最低。敏感性分析表明,贴现率、燃耗深度、隔夜价和反应堆热效率是影响行波堆经济性最重要的参数,而燃料价格和废物处置的价格由于占成本的比例较小,对行波堆经济性的影响不大。  相似文献   

3.
依据工程投资经济分析及平准化成本计算法的基本原理,将固体核废物处置成本分成初始投资成本、废物处置固定运行成本、废物处置可变运行成本、处置场关闭作业成本和关闭的处置场300年监测成本五个部分,并根据处置场建设工程投资方案和我国核电高、中、低发展方案中将逐年产生数量不等、放射性强度不同的固体废物,分别进行了相应核废物处置成本的计算方法研究和程序的编制。  相似文献   

4.
核废物处置成本计算方法研究及程序编制   总被引:1,自引:0,他引:1  
依据工程投资经济分析及平准化成本计算法的基本原理,将固体核废物处置成本分成初始投资成本、废物处置固定运行成本、废物处置可变运行成本、处置场关闭作业成本和关闭的处置场300年监测成本五个部分,并根据处置场建设工程投资方案和我国核电高、中、低发展方案中将逐年产生数量不等、放射性强度不同的固体废物,分别进行了相应核废物处置成本的计算方法研究和程序的编制。  相似文献   

5.
经济性是核能制氢工艺关注的重要方面。本文运用HEEP软件对高温气冷堆耦合碘硫循环的核能制氢工艺进行了经济性分析,基于HEEP软件的特点与功能、计算原理分析了制氢厂能量供应方式、制氢效率等技术参数和运行时间、资本成本、贴现率、借款利率等时间和经济参数的影响。研究结果表明,采用核电厂为制氢厂热电联供与核电厂只供热而由外部电网供电相比经济性更好。通过优化碘硫循环制氢工艺的热交换网络,降低制氢工艺耗热量,可提高制氢效率,从而降低氢气的平准化成本。此外,延长核电厂运行时间、降低核电厂和制氢厂的资本成本、降低贴现率和借款利率有利于提高经济性。最后,比较了几种制氢工艺的经济性,在征收300$/t CO2税的情况下,高温气冷堆耦合碘硫循环制氢的氢气平准化成本最低。综合来看,高温气冷堆耦合碘硫循环制氢是较清洁且具有经济前景的制氢工艺。  相似文献   

6.
针对压水堆装载MOX燃料以及引入干式贮存燃料循环情景,建立了燃料循环成本经济性计算模型,分别对基准情景、装载MOX燃料情景和引入干式贮存燃料循环情景进行具体计算,并就天然铀价格、贴现率对3种燃料循环模式的平准化发电成本的影响进行了敏感性分析,计算结果能为分析压水堆装载MOX燃料以及引入干式贮存经济可行性提供参考。  相似文献   

7.
本文讨论了几个不同定义的发电成本和计算方法,认定当比较不同类型电站的经济竞争能力时应该采用常币值模型计算平均贴现成本。  相似文献   

8.
通过将铀基压水堆平准化成本计算的9因子模型改进为Th-U循环的12因子模型,对先进CANDU型重水堆(ACR)的一次通过的Th-U燃料循环方式进行成本计算及灵敏度分析。结果表明,影响Th-U循环燃料成本的决定性因素是天然铀价格、尾料富集度和前置时间。  相似文献   

9.
<正>【世界核新闻网站2015年9月1日报道】经合组织核能机构(OECD/NEA)与国际能源署(IEA)2015年8月31日联合发布了有关各种发电技术平准化寿期发电成本的第八版联合研究报告《发电成本预测:2015年版》。这份报告主要关注当前能够使用以及能够在2020年投入使用的发电技术。该报告的一个结论是,核电成本与其他基荷能源技术相当,但是新核电厂可以生产  相似文献   

10.
基于压水堆核电厂乏燃料后处理工厂的规模与建设费用的半定量关系,以年处理能力为800 t的商用后处理厂为例,采用自上而下的方法,重点分析了隔夜成本、建造期和建造期间的利率,对采用PUREX流程的后处理工厂的建设费用影响;并用与建造期相同的利率,计算了UOX乏燃料后处理的平准成本.  相似文献   

11.
200MW核供热堆海水淡化系统经济分析   总被引:1,自引:0,他引:1  
王利华  董铎 《核动力工程》1995,16(6):550-554
经对单一产水及水电联产的200MW核供热堆海水淡化系统的经济分析,给出了在目前技术条件下该堆海水淡化系统的水价及影响水价的主要因素,并对选用何种方案提出了具体建议。  相似文献   

12.
The economic implications of designing BWR cores with hydride fuels instead of conventional oxide fuels are analyzed. The economic analysis methodology adopted is based on the lifetime levelized cost of electricity (COE). Bracketing values (1970 and 3010 $/kWe) are used for the overnight construction costs and for the power scaling factors (0.4 and 0.8) that correlate between a change in the capital cost to a change in the power level. It is concluded that a newly constructed BWR reactor could substantially benefit from the use of 10 × 10 hydride fuel bundles instead of 10 × 10 oxide fuel bundles design presently in use. The cost saving would depend on the core pressure drop constraint that can be implemented in newly constructed BWRs - it is between 2% and 3% for a core pressure drop constraint as of the reference BWR, between 9% and 15% for a 50% higher core pressure drop, and between 12% and 21% higher for close to 100% core pressure. The attainable cost reduction was found insensitive to the specific construction cost but strongly dependent on the power scaling factor. The cost advantage of hydride fuelled cores as compared to that of the oxide reference core depends only weakly on the uranium and SWU prices, on the “per volume base” fabrication cost of hydride fuels, and on the discount rate used. To be economically competitive, the uranium enrichment required for the hydride fuelled core needs to be around 10%.  相似文献   

13.
用于空调制冷的核供热堆初步经济分析   总被引:1,自引:1,他引:0  
施永长 《核动力工程》1995,16(3):218-220,226
本文介绍了核供热堆用于制冷的原理,从我国南方大城市空调制冷的实际情况出发,按照目前流行的经济评价方法,对核供热堆在空调制冷方面的利用做了初步经济分析,从而确定了制冷用的经济规模的核供热堆功率的大小和界限,并给出了供热堆的售热成本和售热价格。与常规制冷技术的经济性进行比较,说明核供热制冷技术的发展是有前途的。  相似文献   

14.
An assessment scheme is described for the risk-benefit analyses of nuclear power versus conventional alternatives. Given the siting parameters for the proposed nuclear plant an economic comparison is made with the most advantageous competitive conventional production scenario. The economic benefit is determined from the differential discounted annual energy procurement cost as a function of the real interest rate and amortization time. The risk analysis encompasses following factors: radiation risks in normal operation, reactor accident hazards and economic risks, atmospheric pollutants from the conventional power plants and fuel transportation. The hazards are first considered in terms of probabilistic dose distributions. In the second stage risk components are converted to a compatible form where excess mortality is used as the risk indicator. Practical calculations are performed for the power production alternatives of Helsinki where district heat would be extracted from the nuclear power plant. At the real interest rate of 10% and amortization time of 20 yr the 1000 MW(e) nuclear option is found to be $9.1 m per yr more economic than the optimal conventional scenario. Simultaneously the nuclear alternative is estimated to reduce excess mortality by 2–5 fatal injuries annually.  相似文献   

15.
在决定某种同位素的生产之前,有必要进行生产的经济性分析,以了解和确保生产的经济可行性。本文给出一种用离心法生产非铀同位素的成本分析方法。利用Q模型级联(简称Q级联)理论得到同位素分离的原料利用率与级联相对总流量的关系。通过利用公开的离心法铀同位素分离的单位分离功价格数据,避免生产成本分析中涉及分离单元成本和人员成本等多个复杂因素,在假定分离部分成本正比于分离工厂规模情况下,导出了成本分析的简单公式,可根据原料成本、铀单位分离功价格、原料利用率等对产品成本进行评估和优化。并以铅同位素208Pb的生产为例,对成本分析的过程进行了阐述。结果表明:利用本文的方法,成本分析简单易行。  相似文献   

16.
As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.  相似文献   

17.
电力建设项目经济评价与电价测算有关问题研究   总被引:1,自引:0,他引:1  
刘江华 《中国核电》2009,(4):363-367
电力建设项目经济评价和电价测算在原理上相似,方法上相同,但二者的立足点却是有明显区别的。本文旨在论述电力建设项目经济评价与电价测算各有侧重,不应混为一谈,并阐述了目前电价定价机制的一些不足,需要在电力市场的改革发展中不断完善和改进。  相似文献   

18.
An economic analysis is performed to calculate the levelized unit cost of electricity (COE) for a pressurized water reactor (PWR) retrofitted with a range of potential U (45 wt.%)-ZrH1.6 hydride and UO2 oxide fueled geometries (i.e., combinations of rod diameter and pitch) supported by traditional grid spacers (square array) and wire wrap spacers (hexagonal array). The time frame considered in computing the COE is the remaining plant life, beginning at the time of retrofit. The goals of the analysis are twofold: (1) comparing the economic performance of UO2 and U-ZrH1.6 fuels for a range of retrofitted geometries supported by grid and wire wrap spacers; and (2) investigating the potential economic benefits for nuclear utilities considering retrofitting new fuels and/or geometries into existing PWR pressure vessels. Fuel cycle, operations and maintenance (O & M), and capital costs are considered.The economic performance of U-ZrH1.6 and UO2 fuels is found to be similar, with UO2 fueled designs providing a slight advantage when supported by grid spacers, and U-ZrH1.6 providing a slight advantage when supported by wire wrap spacers. These small differences in cost, however, are within the bounds of uncertainty of this study and are not believed to provide a strong economic argument for the use of one fuel type over the other.To demonstrate the potential economic benefits of retrofitted designs to nuclear utilities, two different comparisons are made. The first compares the COE for retrofitted designs with the COE for a reference PWR, assumed to have operated long enough to recuperate its initial capital investment. The costs for this reference PWR reflect the “do-nothing” case for current plant owners whose primary expenditures are fuel cycle and O & M costs. The second comparison introduces a different reference PWR that includes the costs to operate an existing unit and the cost to purchase power from a newly constructed PWR, for comparison with retrofitted designs which offer increased power relative to existing commercial PWRs.For the first comparison, no grid supported designs and only one wire wrap supported design (i.e., U-ZrH1.6 Stretch Case) provide a lower levelized unit cost of electricity than the reference “do-nothing” PWR. The primary cause of this conclusion is the capital costs incurred by retrofitted designs to change the core geometry and, for many designs, to upgrade primary and secondary loop components for operation at higher power than the reference PWR. The reference “do-nothing” PWR cost in this first comparison includes only operations and maintenance as well as fuel cycle costs but does not include a capital component. For the second comparison, significant cost savings are demonstrated for both grid (15-19% savings) and wire wrap (30-40% savings) supported designs using U-ZrH1.6 and UO2 fuels. These cost savings are enabled by enhancing the pumping capacity of the primary system and, for wire wrap supported designs, by taking advantage of enhanced critical heat flux performance. The optimal geometry for retrofitted UO2 and U-ZrH1.6 fueled PWR cores supported by grid spacers is Drod = 6.5 mm and P/D = 1.39. The cost savings over the second case reference PWR are ∼19 and 15%, respectively. The cost savings for retrofitted PWRs that incorporate wire wrap spacing are even larger because of operation at even higher power. Cost savings over the reference PWR range between 30 and 40% for the U-ZrH1.6 and UO2 Achievable and Stretch Cases. The optimal geometries for the U-ZrH1.6 Achievable and Stretch Cases are Drod = 8.08 mm, P/D = 1.41 and Drod = 8.71 mm, P/D = 1.39, respectively. The optimal geometries for the UO2 Achievable and Stretch Cases are Drod = 7.13 mm, P/D = 1.42 and Drod = 9.34 mm, P/D = 1.27, respectively. Utilities seeking to meet rising demand by expanding capacity may therefore strongly benefit from retrofitting existing PWRs with either U-ZrH1.6 or UO2 fueled designs. These new designs have different geometries than are currently used by commercial plants. A conclusion on which fuel type to use, however, could not be reached in this analysis as both offer similar economic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号