首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A beam profile scanner system for measuring the distribution of polarization and intensity is described. The thickness of a special scatterer can be adjusted easily, so that it does not disturb the actual measurement. The scatterer is moved through through the beam at a given speed. Whenever a scattered event of interest occurs, the system records its location. In this way the intensity and polarization distribution spectra are obtained. The deceleration and acceleration at the turning points of the motion are carefully programmed so as to minimize wear of the mechanical components.  相似文献   

2.
Li Y  Katz J 《Applied optics》1995,34(28):6403-6416
Avector approach to tracing the path of a laser beam through an optical system containing movable plane mirrors is described, which permits a unified treatment of a number of basic mirror-scanning devices. We show that the scan field produced by the mirror-scanning system is a curved surface with a straight line as its generating element. The cross section of the scan field can be a circle, an ellipse, or a curve in the shape of an egg. Based on this understanding, some advanced topics are addressed, e.g., the relationship between the scan field and the scan pattern, the dependence of the scan pattern on the location and orientation of the observation surface, optical distortions in a scan pattern, spot-size enlargement caused by non-normal incidence of the scan beam on the observation plane, and so on. Design equations and curves are derived for the mirror-scanning devices that most frequently exist in linear and circular scan technology. Part II contains an analysis of the galvanometer-based optical scanner paddle scanner and the regular polygon. In Part III, X-Y scanning systems are studied.  相似文献   

3.
Yaqoob Z  Riza NA 《Applied optics》2002,41(26):5568-5573
Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.  相似文献   

4.
Riza NA  Yaqoob Z 《Applied optics》2004,43(13):2703-2708
A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss.  相似文献   

5.
This paper describes the design and implementation of a versatile, open-architecture research data acquisition system using a commercially available medical ultrasound scanner. The open architecture will allow researchers and clinicians to rapidly develop applications and move them relatively easy to the clinic. The system consists of a standard PC equipped with a camera link and an ultrasound scanner equipped with a research interface. The ultrasound scanner is an easy-to-use imaging device that is capable of generating high-quality images. In addition to supporting the acquisition of multiple data types, such as B-mode, M-mode, pulsed Doppler, and color flow imaging, the machine provides users with full control over imaging parameters such as transmit level, excitation waveform, beam angle, and focal depth. Beamformed RF data can be acquired from regions of interest throughout the image plane and stored to a file with a simple button press. For clinical trials and investigational purposes, when an identical image plane is desired for both an experimental and a reference data set, interleaved data can be captured. This form of data acquisition allows switching between multiple setups while maintaining identical transducer, scanner, region of interest, and recording time. Data acquisition is controlled through a graphical user interface running on the PC. This program implements an interface for third-party software to interact with the application. A software development toolkit is developed to give researchers and clinicians the ability to utilize third-party software for data analysis and flexible manipulation of control parameters. Because of the advantages of speed of acquisition and clinical benefit, research projects have successfully used the system to test and implement their customized solutions for different applications. Three examples of system use are presented in this paper: evaluation of synthetic aperture sequential beamformation, transverse oscillation for blood velocity estimation, and acquisition of spectral velocity data for evaluating aortic aneurysms.  相似文献   

6.
黄宇星  程敬之 《声学技术》1994,13(3):131-134
本文介绍一种用于B型扇扫超声成像的数字扫描变换器。它采用一种针对有效像素点变换的技术,有效地降低了对电路速度的要求,从而提高了数字扫描变换器的性能,有利于高级图像处理技术的实现。  相似文献   

7.
Improving the imaging speed of atomic force microscopy (AFM) requires accurate nanopositioning at high speeds. However, high speed operation excites resonances in the AFM's mechanical scanner that can distort the image, and therefore typical users of commercial AFMs elect to operate microscopes at speeds below which scanner resonances are observed. Although traditional robust feedforward controllers and input shaping have proven effective at minimizing the influence of scanner distortions, the lack of direct measurement and use of model-based controllers have required disassembling the microscope to access lateral scanner motion with external sensors in order to perform a full system identification experiment, which places excessive demands on routine microscope operators. Further, since the lightly damped instrument dynamics often change from experiment to experiment, model-based controllers designed from offline system identification experiments must trade off high speed performance for robustness to modeling errors. This work represents a new way to automatically characterize the lateral scanner dynamics without addition of lateral sensors, and shape the commanded input signals in such a way that disturbing dynamics are not excited. Scanner coupling between the lateral and out-of-plane directions is exploited and used to build a minimal model of the scanner that is also sufficient to describe the nature of the distorting resonances. This model informs the design of an online input shaper used to suppress spectral components of the high speed command signals. The method presented is distinct from alternative approaches in that neither an information-complete system identification experiment nor microscope modification are required. Because the system identification is performed online immediately before imaging, no tradeoff of performance is required. This approach has enabled an increase in the scan rates of unmodified commercial AFMs from 1-4 lines s(-1) to over 40 lines s(-1).  相似文献   

8.
Yaqoob Z  Arain MA  Riza NA 《Applied optics》2003,42(26):5251-5262
A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.  相似文献   

9.
Walters CT 《Applied optics》1995,34(13):2220-2225
A general two-dimensional ray-trace analysis is presented for the motion of a geometric focal point over a flat surface provided by a postobjective rotating polygon laser beam scanner. The exact defocus equation is derived for any value of the neutral scan position deflection angle and the polygon rotation angle. The scan nonlinearity is derived for the special case of a zero neutral scan deflection angle. Geometric parameters were found that reduce the peak-to-peak defocus by more than an order of magnitude from that found in previous design approaches. Conditions were also found that reduce scan nonlinearity to less than 2 × 10(-4). Practical limitations, such as large polygons and beam obscurations, encountered in the implementation of postobjective scanning are discussed.  相似文献   

10.
Yaqoob Z  Rizvi AA  Riza NA 《Applied optics》2001,40(35):6425-6438
A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.  相似文献   

11.
The real-time application of acoustic radiation force impulse (ARFI) imaging requires both short acquisition times for a single ARFI image and repeated acquisition of these frames. Due to the high energy of pulses required to generate appreciable radiation force, however, repeated acquisitions could result in substantial transducer face and tissue heating. We describe and evaluate several novel beam sequencing schemes which, along with parallel-receive acquisition, are designed to reduce acquisition time and heating. These techniques reduce the total number of radiation force impulses needed to generate an image and minimize the time between successive impulses. We present qualitative and quantitative analyses of the trade-offs in image quality resulting from the acquisition schemes. Results indicate that these techniques yield a significant improvement in frame rate with only moderate decreases in image quality. Tissue and transducer face heating resulting from these schemes is assessed through finite element method modeling and thermocouple measurements. Results indicate that heating issues can be mitigated by employing ARFI acquisition sequences that utilize the highest track-to-excitation ratio possible.  相似文献   

12.
Yaqoob Z  Riza NA 《Applied optics》2005,44(13):2592-2599
An acousto-optic tunable filter-based wavelength-selection module with features optimized for a wavelength-multiplexed optical scanner (W-MOS) is proposed and demonstrated. The W-MOS produces high-speed multiple scan beams if it is engaged with an agile tunable source with multiwavelength generation capability. In particular, the proposed fiber-connected module features high-speed, low-loss, narrow-linewidth, and single-multiple wavelength selection by means of radio frequency drive signal control for single- or multiple-beam scan operations. The unique module offers input laser beam power control that in turn delivers the desired scanned laser beam power shaping. Experimental results match module design theory and demonstrate a fast 5.4-micros wavelength selection speed, a low (1.53-dB) fiber-to-fiber optical insertion loss, a 5.55-nm 3-dB spectral width, and a 1500-1600-nm agile wavelength operational band.  相似文献   

13.
声学反演是快速、低成本获取浅海局部地声参数的有效方法之一,其中,利用海面噪声的垂直相干函数反演海底参数,只需要两个垂直排列的水听器,不需要专门的发射声源,隐蔽性好,有较高的军事应用价值.通过已有的海面噪声场模型,分析了海底声速、密度及衰减系数对噪声垂直相干函数的敏感度,并利用中国某海区的海洋环境噪声试验数据,结合差异进...  相似文献   

14.
新型图像扫描器具有较高的响应频率,可以实现高速扫描。在研究扫描器运动参数分离的基础上,利用对称放置的半导体位置探测器建立了扫描器的多运动参数测试系统,提出了光电二维位置传感器的非线性修正和补充方法,实现了四路模拟信号的DMA传送,提高了测试的速度和精度,实现扫描器在高频运动时的多运动参数测试。  相似文献   

15.
Shimoji M 《Applied optics》1995,34(13):2305-2316
The analysis of a patented optical beam deflector based on a rotating prism is presented. It is shown that because of the transmissive, as opposed to reflective, nature of the proposed deflector, the resulting scan spot is for all practical purposes completely free of the tracking error that is so problematic to all reflective-type deflectors. In addition, if a conical scan is either acceptable or desirable, the scan lens design will be much simpler because the f - θ condition is not required and the scan field is inherently flat.  相似文献   

16.
Cai Y  Tong X  Tong P  Bu H  Shu R 《Applied optics》2010,49(34):H11-H19
As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.  相似文献   

17.
Rosa CC  Rogers J  Pedro J  Rosen R  Podoleanu A 《Applied optics》2007,46(10):1795-1808
A versatile time-domain optical coherence tomography system is presented that can generate cross-sectional images by using either transverse priority or depth priority scanning. This is made possible by using a transmissive scanning delay line compatible with balance detection operating at a speed similar to that of the transverse scanner used to scan the beam across the target. In vivo images from the retina are generated and shown using the same system switched to either transverse or depth priority scanning regime, by using the scanning delay line either in slow or fast scanning modes, respectively. A comparative analysis of different scanning regimes depending on image size to fit different areas to be imaged is presented. Safety thresholds due to the different continuous irradiation time per transverse pixel in different scanning regimes are also considered. We present the maximum exposure level for a variety of scanning procedures, employing either A scanning (depth priority) or T scanning (transverse priority) when generating cross-sectional images, en face images, or collecting 3D volumes.  相似文献   

18.
Laser beam melting (LBM) of aluminum alloys is gaining a wide popularity in different industrial applications as an alternative technology for the production of individual and complex parts. A long build time and the high amount of experimental work for optimizing or finding new process parameters are two of the current challenges for reaching an industrial maturity. This paper proposes an efficient way to determine new process parameters for aluminum alloy aluminum-silicon10-magnesium with highest build-up rates by using a 3D finite element model on the mesoscopic level. High laser power in combination with the hull-core build strategy was used to increase the build-up rate without impairing the part accuracy. The influences of high laser power, laser diameter and scan speed on the melt pool were studied by using a thermal simulation of single laser tracks. Based on the simulation results the process window could be derived and was tested on a laser beam melting (LBM) system. The achieved reduction of the build time of up to 31 % without loss in part accuracy proved the novel approach for the prediction of the required process window as an efficient method to reduce costly and time-consuming experimental work.  相似文献   

19.
Current real-time volumetric scanners use a 2-D array to scan a pyramidal volume consisting of many sector scans stacked in the elevation direction. This scan format is primarily useful for cardiac imaging to avoid interference from the ribs. However, a real-time rectilinear volumetric scan with a wider field of view close to the transducer could prove more useful for abdominal, breast, or vascular imaging. In previous work, computer simulations of very sparse array transducer designs in a rectilinear volumetric scanner demonstrated that a Mills cross array showed the best overall performance given current system constraints. Consequently, a 94×94 Mills cross array including 372 active channels operating at 5 MHz has been developed on a flexible circuit interconnect. In addition, the beam former delay software and scan converter display software of the Duke volumetric scanner were modified to achieve real-time rectilinear volumetric scanning consisting of a 30-mm×8-mm×60-mm scan at a rate of 47 volumes/s. Real-time rectilinear volumetric images were obtained of tissue-mimicking phantoms, showing a spatial resolution of 1 to 2 mm. Images of carotid arteries in normal subjects demonstrated tissue penetration to 6 cm  相似文献   

20.
Simulation of temperature distribution in single metallic powder layer for laser micro-sintering (LMS) using finite element analysis (FEA) has been proposed, taking into account the adoption of ANSYS μMKS system of units, the transition from powder to solid and the utilization of moving laser beam power with a Gaussian distribution. By exploiting these characteristics a more accurate model could be achieved. The effects of the process parameters, such as laser beam diameter, laser power and laser scan speed on the temperature distribution and molten pool dimensions have been preliminarily investigated. It is shown that temperature increases with the laser power and decreases with the scan speed monotonously. For the laser beam diameter during single-track, the maximum temperature of the powder bed increases with the decrease in the laser beam diameter, but far from the center of the laser beam area, the temperature increases with the laser beam diameter. The molten pool dimensions in LMS are much less than that in classical selective laser sintering (SLS) process. Both molten pool length and width decrease with the laser beam diameter and the laser scan speed, but increase with the laser power. The molten pool length is always larger than the molten pool width. Furthermore, the center of molten pool is slightly shifted for the laser multi-track.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号