首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自由空间光通信的最大后验概率检测   总被引:1,自引:0,他引:1  
高宠  马晶  谭立英  于思源  潘锋 《光电工程》2007,34(3):54-56,62
为了减小大气闪烁对自由空间光通信的通信性能的影响,基于光信号的对数振幅序列服从联合高斯分布特性,提出了一种最大后验概率算法,给出了随时间变化的判决阈值.模拟结果表明,此算法可以有效减小大气闪烁对通信性能的影响,降低其误码率.  相似文献   

2.
Turbulence fading is one of the main impairments affecting the operation of free-space optical (FSO) communication systems. The authors study the performance of FSO communication systems, also known as wireless optical communication systems, over log-normal and gamma-gamma atmospheric turbulence-induced fading channels. These fading models describe the atmospheric turbulence because of its very good agreement with experimental measurement data. Closed-form expressions for the average (ergodic) capacity and the outage probability are derived for both statistical models. Another contribution of this work is a study of how the performance metrics are affected by the atmospheric conditions and other parameters such as the length of the link and the receiver's aperture diameter. The derived analytical expressions are verified by various numerical examples and can be used as an alternative to time-consuming Monte-Carlo simulations.  相似文献   

3.
Tellez JA  Schmidt JD 《Applied optics》2011,50(24):4737-4745
The propagation of a free-space optical communications signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades, which negatively impact the performance of the communications link. The gamma-gamma probability density function is commonly used to model the scintillation of a single beam. One proposed method to reduce the occurrence of scintillation-induced fades at the receiver plane involves the use of multiple beams propagating through independent paths, resulting in a sum of independent gamma-gamma random variables. Recently an analytical model for the probability distribution of irradiance from the sum of multiple independent beams was developed. Because truly independent beams are practically impossible to create, we present here a more general but approximate model for the distribution of beams traveling through partially correlated paths. This model compares favorably with wave-optics simulations and highlights the reduced scintillation as the number of transmitted beams is increased. Additionally, a pulse-position modulation scheme is used to reduce the impact of signal fades when they occur. Analytical and simulated results showed significantly improved performance when compared to fixed threshold on/off keying.  相似文献   

4.
Anguita JA  Neifeld MA  Vasic BV 《Applied optics》2007,46(26):6561-6571
By means of numerical simulations we analyze the statistical properties of the power fluctuations induced by the incoherent superposition of multiple transmitted laser beams in a terrestrial free-space optical communication link. The measured signals arising from different transmitted optical beams are found to be statistically correlated. This channel correlation increases with receiver aperture and propagation distance. We find a simple scaling rule for the spatial correlation coefficient in terms of the propagation distance and we are able to predict the scintillation reduction in previously reported experiments with good accuracy. We propose an approximation to the probability density function of the received power of a spatially correlated multiple-beam system in terms of the parameters of the single-channel gamma-gamma function. A bit-error-rate evaluation is also presented to demonstrate the improvement of a multibeam system over its single-beam counterpart.  相似文献   

5.
Jones IR  Heuring VP 《Applied optics》1998,37(26):6127-6135
Major issues in optoelectronic system design include timing, synchronization, and control. Designing free-space optical computing architectures is difficult because of the high degree of system complexity, parallelism, and concurrency in conjunction with the high cost and lack of availability of devices. Current simulation tools lack the expressiveness to model the system structure and behavior of parallel and concurrent architectures, thus making them inefficient and ineffective. We show that Petri nets, compared with other system-modeling methodologies, are more efficient and effective at expressing the functional, behavioral, and structural properties of parallel and concurrent architectures. We show how an extended version of the standard Petri net, a timed-colored Petri net, is used to model and simulate free-space optoelectronic computing architectures. We also present methods for analysis of system timing, synchronization, and control behavior.  相似文献   

6.
Arnon S  Rotman S  Kopeika NS 《Applied optics》1997,36(24):6095-6101
The basic free-space optical communication system includes at least two satellites. To communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is to increase the satellite receiver beacon power. However, this solution requires increased power consumption and weight, both of which are disadvantageous in satellite development. Considering these facts, we derive a mathematical model of a communication system that adapts optimally the transmitter beam width and the transmitted power to the tracking system performance. Based on this model, we investigate the performance of a communication system with discrete element optical phased array transmitter telescope gain. An example for a practical communication system between a Low Earth Orbit Satellite and a Geostationary Earth Orbit Satellite is presented. From the results of this research it can be seen that a four-element adaptive transmitter telescope is sufficient to compensate for vibration amplitude doubling. The benefits of the proposed model are less required transmitter power and improved communication system performance.  相似文献   

7.
Arnon S  Rotman SR  Kopeika NS 《Applied optics》1998,37(27):6366-6374
Free-space optical communication between satellites in a distributed network can permit high data rates of communication between different places on Earth. To establish optical communication between any two satellites requires that the line of sight of their optics be aligned during the entire communication time. Because of the large distance between the satellites and the alignment accuracy required, the pointing from one satellite to another is complicated because of vibrations of the pointing system caused by two fundamental stochastic mechanisms: tracking noise created by the electro-optic tracker and vibrations derived from mechanical components. Vibration of the transmitter beam in the receiver plane causes a decrease in the received optical power. Vibrations of the receiver telescope relative to the received beam decrease the heterodyne mixing efficiency. These two factors increase the bit-error rate of a coherent detection network. We derive simple mathematical models of the network bit-error rate versus the system parameters and the transmitter and receiver vibration statistics. An example of a practical optical heterodyne free-space satellite optical communication network is presented. From this research it is clear that even low-amplitude vibration of the satellite-pointing systems dramatically decreases network performance.  相似文献   

8.
Lacroix F  Kirk AG 《Applied optics》2001,40(29):5240-5247
A numerical analysis indicates that tolerance stackup effects in free-space optical interconnects are significant even for short systems containing few components. Results prove that worst-case or root-sum-square analyses are not adequate to predict probable performance accurately. A Monte Carlo analysis must be performed.  相似文献   

9.
A free-space optical logic technique is presented that utilizes a two-dimensional array of diffractive optical elements. Each optical element focuses light to multiple, separate positions in the output focal plane. The focal spots from different optical elements are allowed to overlap spatially, resulting in interference. By changing the phase shift between the optical elements, one can create different optical logic operations in the focal plane. The technique is demonstrated by the use of two input beams incident onto a multiplexed optical element written onto a programmable spatial light modulator. The optical element simultaneously creates both AND and XOR logic functions in the output plane.  相似文献   

10.
A self-alignment technique that uses optical microconnectors forthree-dimensional optics in optical computing systems and opticalinterconnections is proposed. The optical microconnector consistsof an optical plug and a socket. On the output plane of an opticalsystem, optical plugs are made of a photosensitive resin exposed tolight through the optical system. Because the correspondingpositions of the optical plugs are critical to the image formed by theoptical system, a detecting device can be aligned and mounted by theconnection of the optical plugs to sockets formed on the surface of thedevice. Optical microconnectors were experimentally fabricated in areflective block optical system. An alignment accuracy of ~20 mum was attained in the experiment.  相似文献   

11.
Neilson DT  Schenfeld E 《Applied optics》1998,37(14):2944-2952
A combined optoelectronic and optomechanical packaging technique for the construction of snap-together free-space optical interconnect systems is described. The modules integrate relaying and routing functions by use of transparent optical molded plastic, which can achieve sufficient alignment precision that further adjustment is not required during system assembly. Methods to integrate the optoelectronic chips, such as vertical-cavity surface-emitting laser and receiver arrays with these plastic optical modules are described. Other chips can also be integrated to form optoelectronic multichip modules. These modules can also be designed to accommodate coupling to or from optical fiber arrays. A test-bed system to demonstrate the concept was assembled to a lower precision by use of conventional machining techniques.  相似文献   

12.
We report the design and fabrication of a chirped switchable reflective grating (CSRG) recorded in a holographic polymer-dispersed liquid-crystal material. This CSRG is a spatial wavelength-selective flattener in a free-space dynamic gain equalizer for use in wavelength-division multiplexing (WDM) networks. Prelimenary experimental results show that this device permits the management of the spectral power of a WDM stream with an attenuation range of 6 dB. The polarization-dependent loss introduced by the CSRG is shown to be less than 0.1 dB.  相似文献   

13.
We report on the design and fabrication of a planar integrated free-space optical system working on the basis of binary phase diffractive optical elements (DOEs) realized in GaN on a sapphire substrate. Group III-nitride/sapphire substrates enable the parallel monolithic integration of passive microoptical elements like lenses and gratings as demonstrated here and optoelectronic devices like light emitters and photodetectors on a single wafer. We present an approach for the simultaneous optimization of the efficiency of transmissive and reflective diffractive optical elements processed in a single lithographic etching step.  相似文献   

14.
The use of optical interconnects for communication between points on a microchip is motivated by system-level interconnect modeling showing the saturation of metal wire capacity at the global layer. Free-space optical solutions are analyzed for intrachip communication at the global layer. A multiscale solution comprising microlenses, etched compound slope microprisms, and a curved mirror is shown to outperform a single-scale alternative. Microprisms are designed and fabricated and inserted into an optical setup apparatus to experimentally validate the concept. The multiscale free-space system is shown to have the potential to provide the bandwidth density and configuration flexibility required for global communication in future generations of microchips.  相似文献   

15.
Jarczynski M  Seiler T  Jahns J 《Applied optics》2006,45(25):6335-6341
An integrated three-dimensional optical multilayer system for optical data communications is presented. It is based on the use of free-space optical light propagation and combines two integration principles, namely, planar and stacked integration. The combination of both integration schemes aims at a maximal design flexibility for complex geometric layouts. On the other hand, packaging issues that stem from assembly and tolerance have to be considered. Here we describe the basic concept and demonstrate the implementation of an optical interface module in a processor-memory bus.  相似文献   

16.
The application of coherent detection to indoor optical free-space communications is considered here. Analytical expressions are derived for a wide line-of-sight (W-LOS) optical link which determine the coverage area and the required photo-detection area given different binary digital transmission schemes and a given bit rate. The coverage area is maximised for systems using both metal-semiconductor-metal (MSM) and PIN photo-detectors. Results show that MSM photo-detectors, due to their inherently lower capacitance per unit photo-detection area, result in a greater coverage area than their PIN counterparts. To demonstrate the viability of implementing coherent detection indoors, a 200 Mb/s LOS optical link which uses coherent detection is also reported.  相似文献   

17.
We describe an optical system developed to form the basis of a 64 × 64 free-space optical matrix-matrix crossbar switch. The design and performance of each of the main optical components is discussed: lenses, diffractive optical elements, and polarizing beamsplitters, together with the optomechanical hardware design. For these components, throughput levels of -6.9 dB have been achieved, which is compatible with full system operation at 10(-12) bit error rates at ≥270 Mbits s(-1).  相似文献   

18.
The optimum design of free-space optical interconnection systems utilizing diffractive optics is determined from a practical engineering standpoint for systems ranging from space invariant to fully space variant. System volume is calculated in terms of parameters such as the f-number of the diffractive lens, the wavelength of light, and also the total number, size, and separation of the optical sources and detectors. Performance issues such as interconnection complexity, diffraction efficiency, and signal-tonoise ratio are discussed. Diffractive optics fabricated by electron-beam direct-write techniques are used to provide experimental results for both shuffle-exchange and twin-butterfly free-space optical interconnects.  相似文献   

19.
We address the problem of achromatization of an optical system for the realization of planar-integrated, free-space optics. In particular we demonstrate an integrated optical Fourier transformation module that was achromatized for the visible spectrum by means of a diffractive lens doublet. The optical system design is studied by using the parabolic approximation of the scalar diffraction theory, including terms related to astigmatism. Based on the method of ABCD ray matrices, the optical specifications of the lens doublet are derived and the chromatic correction effect is quantified. For experimental confirmation the diffraction patterns of various grating structures are evaluated.  相似文献   

20.
Gruber M 《Applied optics》2004,43(2):463-470
Even in the semiconductor industry, free-space optical technology is nowadays seen as a prime option for solving the continually aggravating problem with VLSI chips, namely, that the interconnect technology has failed to keep pace with the increase in communication volume. To make free-space optics compatible with established lithography-based design and fabrication techniques the concept of planar integration was proposed approximately a decade ago. Here its evolution into a photonic microsystems engineering concept is described. For demonstration, a multichip module with planar-integrated freespace optical vector-matrix-type interconnects was designed and built. It contains flip-chip-bonded vertical-cavity surface emitting laser arrays and a hybrid chip with an array of multiple-quantum-well p-i-n diodes on top of a standard complementary metal-oxide semiconductor circuit as key optoelectronic hardware components. The optical system is integrated into a handy fused-silica substrate and fabricated with surface-relief diffractive phase elements. It has been optimized for the given geometrical and technological constraints and provides a good interconnection performance, as was verified in computer simulations on the basis of ray tracing and in practical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号