首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金其奇  谢峻林  李凤祥  齐凯  方德  何峰 《化工进展》2019,38(3):1411-1418
为了探究涂层组分对整体式低温选择性催化还原(SCR)脱硝催化剂性能的影响,本文使用锰氧化物(MnO x )、氧化物涂层(TiO2、SiO2及Al2O3)、堇青石(CC)基体制备整体式涂层催化剂,考察催化剂牢固度以及脱硝活性。结果表明:在200℃ 时,对于MnO x /Al2O3/CC催化剂,MnO x 负载率为6%(质量分数)时脱硝效率最高为95%;对于MnO x /TiO2/CC,负载率为6%~12%时脱硝效率相差不大,为75%左右;对于MnO x /SiO2/CC,负载率12%时脱硝效率80%。样品牢固度排列顺序如下:MnO x /Al2O3/CC > MnO x /SiO2/CC > MnO x / TiO2 /CC。通过BET、SEM、TG、Raman、H2-TPR等测试与分析方法发现:影响催化剂性能的因素主要为活性组分MnO x 状态以及载体性能的差异。Al2O3涂层比表面积适中,作为载体活性好;SiO2涂层虽然比表面积大、牢固度好,但作为载体活性差;TiO2作为涂层比表面积较小,溶胶中溶剂挥发快使得涂层表面不均匀。  相似文献   

2.
Development of new catalysts for deep hydrodesulfurization of gas oil   总被引:3,自引:0,他引:3  
TiO2–Al2O3 composite supports have been prepared by chemical vapor deposition (CVD) over γ-Al2O3 substrate, using TiCl4 as the precursor. High dispersion of TiO2 overlayer on the surface of Al2O3 has been obtained, and no cluster formation has been detected. The catalytic behavior of Mo supported on Al2O3, TiO2 and TiO2–Al2O3 composite has been investigated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and methyl-substituted DBT derivatives. The conversion over the Mo catalysts supported on TiO2–Al2O3 composite, in particular for the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT) is much higher than that of conversion obtained over Mo catalyst supported on Al2O3. The ratio of the corresponding cyclohexylbenzenes/biphenyls is increased over Mo catalyst supported on TiO2–Al2O3 composite support. This means that the reaction rate of prehydrogenation of an aromatic ring rather than the rate of hydrogenolysis of C–S bond cleavage is accelerated for the HDS of DBT derivatives. The Mo/TiO2–Al2O3 catalyst leads to higher catalytic performance for deep HDS of gas oil.  相似文献   

3.
Experiments determined methanol removal and catalyst elutriation rates during photocatalytic oxidation (PCO) of fluidized and packed beds of various titania-based catalysts. The study developed elutriation-resistant catalysts in which TiO2 was precipitated from solution (p-TiO2), or was coated on an Al2O3 support (TiO2/Al2O3) and compared them to Degussa P-25 TiO2. Although Degussa P-25 TiO2 oxidized methanol effectively, it elutriated at a rate that was two orders of magnitude greater than those of p-TiO2 and TiO2/Al2O3. In addition, TiO2/Al2O3 removed methanol at a significantly greater rate than did P-25, with p-TiO2 being the least active. Fluidized beds produced greater PCO rates than did packed beds of P-25 and TiO2/Al2O3. Fluidization enhancers, such as vibration and incorporation of a static mixer, improved the performance of the P-25 fluidized bed, but did not change the effectiveness of TiO2/Al2O3 or p-TiO2. The activity of TiO2/Al2O3 decreased with increasing calcination temperature (over the temperature range 673–873 K). The optimum TiO2 loading for TiO2/Al2O3 was 30 wt.%.  相似文献   

4.
Ag-based catalysts supported on various metal oxides, Al2O3, TiO2, and TiO2–Al2O3, were prepared by the sol–gel method. The effect of SO2 on catalytic activity was investigated for NO reduction with propene under lean burn condition. The results showed the catalytic activities were greatly enhanced on Ag/TiO2–Al2O3 in comparison to Ag/Al2O3 and Ag/TiO2, especially in the low temperature region. Application of different characterization techniques revealed that the activity enhancement was correlated with the properties of the support material. Silver was highly dispersed over the amorphous system of TiO2–Al2O3. NO3 rather than NO2 or NOx reacted with the carboxylate species to form CN or NCO. NO2 was the predominant desorption species in the temperature programmed desorption (TPD) of NO on Ag/TiO2–Al2O3. More amount of formate (HCOO) and CN were generated on the Ag/TiO2–Al2O3 catalyst than the Ag/Al2O3 catalyst, due to an increased number of Lewis acid sites. Sulfate species, resulted from SO2 oxidation, played dual roles on catalytic activity. On aged samples, the slow decomposition of accumulated sulfate species on catalyst surface led to poor NO conversion due to the blockage of these species on active sites. On the other hand, catalytic activity was greatly enhanced in the low temperature region because of the enhanced intensity of Lewis acid site caused by the adsorbed sulfate species. The rate of sulfate accumulation on the Ag/TiO2–Al2O3 system was relatively slow. As a consequence, the system showed superior capability for selective adsorption of NO and SO2 toleration to the Ag/Al2O3 catalyst.  相似文献   

5.
A novel TiO2/Al2O3/cordierite honeycomb-supported V2O5–MoO3–WO3 monolithic catalyst was studied for the selective reduction of NO with NH3. The effects of reaction temperature, space velocity, NH3/NO ratio and oxygen content on SCR activity were evaluated. Two other V2O5–MoO3–WO3 monolithic catalysts supported on Al2O3/cordierite honeycomb or TiO2/cordierite honeycomb support, two types of pellet catalysts supported on TiO2/Al2O3 or Al2O3, as well as three types of pellet catalysts V2O5–MoO3–WO3–Al2O3 and V2O5–MoO3–WO3–TiO2 were tested for comparison. The experiment results show that this catalyst has a higher catalytic activity for SCR with comparison to others. The results of characterization show, the preparation method of this catalyst can give rise to a higher BET surface area and pore volume, which is strongly related with the highly active performance of this catalyst. At the same time, the function of the combined carrier of TiO2/Al2O3 cannot be excluded.  相似文献   

6.
恒热流直管中纳米流体对流传热的实验研究(英文)   总被引:1,自引:0,他引:1  
In this work, the laminar convective heat transfer performance and the pressure drop of water-based nanofluids containing Al2O3, TiO2 and SiO2 nanoparticles flowing through a straight circular tube were experimen-tally investigated. The experimental results showed that addition of small amounts of nano-sized Al2O3 and TiO2 particles to de-ionized water increased heat transfer coefficients considerably, while the SiO2 nanofluids showed the opposite behavior attracting the authors’ interests. An average of 16%and 8.2%increase in heat transfer coefficient were observed with the average of 28%and 15%penalty in pressure drop for Al2O3 and TiO2 nanofluids.  相似文献   

7.
Dense corundum/rutile composites were obtained through two different processing routes: (a) decomposition of Al2TiO5 compacts, and (b) conventional sintering of Al2O3/TiO2 powder compacts. Decomposition of Al2TiO5 yielded microstructures consisting of thin hexagonal plate-shaped corundum particles with high aspect ratio embedded in a rutile matrix. These composites exhibited a bending strength of up to 250 MPa and indentation toughness of depending on the annealing conditions. The results are compared with those obtained on conventionally sintered Al2O3/TiO2 composites.  相似文献   

8.
通过球磨混合法,制备TiO2、SiO2和TiO2+SiO2掺杂的Al2 O3粉体,经不同温度煅烧后进行X射线衍射(XRD)测试,比较研究这三种掺杂对Al2 O3粉体相转变温度的影响.研究结果表明,TiO2、SiO2掺杂对γ-Al2 O3向α-Al2 O3的相转变均有促进作用.在掺杂质量分数为0.5%的情况下,二者可分别...  相似文献   

9.
The oxidation of perchloroethylene (PCE) was investigated over chromium oxide catalysts supported on SiO2, SiO2–Al2O3, activated carbon, mordenite type zeolites, MgO, TiO2 and Al2O3. Supported chromium oxide catalysts were more active than any other metal oxide catalysts including noble metal examined in the present study. PCE removal activity of chromium oxide catalysts mainly depended on the type of supports and the content of metal loaded on the catalyst surface. TiO2 and Al2O3 containing high surface areas were effective for the high performance of PCE removal, since the formation of well dispersed Cr(VI) active reaction sites for the present reaction system, was enhanced even for the high Cr loading on the catalyst surface. CrOx catalysts supported on TiO2 and Al2O3 also exhibited stable PCE removal activity at a low feed concentration of PCE of 30 ppm up to 100 h at 350°C. However, significant catalyst deactivation was observed at high PCE concentration of 10 000 ppm. CrOx/TiO2 revealed stronger water tolerance than CrOx/Al2O3 due to the surface hydrophobicity.  相似文献   

10.
黄伟  王文年  李飞  张勇  兰力强  侯鑫  孙权  满雪 《工业催化》2014,22(7):489-492
阐述了近年来Claus尾气加氢脱硫催化剂载体的研究现状。主要介绍了Al2O3和TiO2单组分载体及Al2O3-TiO2复合载体。Al2O3载体具有比表面积大、机械性能好和容易成型的特点,应用较广,但低温加氢活性较差;TiO2载体具有较高的低温加氢和有机硫水解活性,但比表面积较小,一般以复合载体形式使用;复合载体具有较好的低温加氢活性和抗水性能,但制备工艺复杂。介孔结构不仅可以增大载体的比表面积,同时有利于分子的扩散,具有更加优异的活性。活性组分在复合载体表面呈现不同的活性状态,从而改变反应条件。如何调控Al2O3载体的孔道结构,研究复合载体各组分之间的作用及对活性组分的影响是今后的发展方向。  相似文献   

11.
Ni/Al_2O_3催化剂是甲烷二氧化碳重整反应制取合成气研究最多、最具应用潜力的一种催化剂。通过对催化剂进行CO_2-TPD研究,考察还原态Ni/Al_2O_3催化剂的CO_2脱附特性。结果表明,浸渍法制备的Ni/Al_2O_3催化剂CO_2脱附曲线呈现双峰,分别在(60~65)℃和(350~380)℃出现高低温两个活性位;高温CO_2吸附量为3.0 cm~3·g~(-1),低温CO_2吸附量为24.0 cm~3·g~(-1)。催化剂的CO_2吸附量与其Ni含量无关。考察选用不同载体的CO_2脱附行为,发现以Al_2O_3为载体的催化剂CO_2吸附量是MgO和SiO_2为载体催化剂的2~4倍,以TiO_2为载体的催化剂几乎不吸附CO_2。  相似文献   

12.
Composite types of TiO2–Al2O3 supports, which are γ-aluminas coated by titania, have been prepared by chemical vapor deposition (CVD), using TiCl4 as a precursor. Then supported molybdenum catalysts have been prepared by an impregnation method. As supports, we employed γ-alumina, anatase types of titania, and composite types of TiO2–Al2O3 with different loadings of TiO2. We studied the conversion of Mo from oxidic to sulfidic state through sulfurization by X-ray photoelectron spectroscopy (XPS). The obtained spectra unambiguously revealed the higher reducibility from oxidic to sulfidic molybdenum species on the TiO2 and TiO2–Al2O3 supports compared to that on the Al2O3 support. Higher TiO2 loadings of the TiO2–Al2O3 composite support led to higher reducibility for molybdenum species. Furthermore, the catalytic behavior of supported molybdenum catalysts has been investigated for hydrodesulfurization (HDS) of dibenzothiophene (DBT) and methyl-substituted DBT derivatives. The conversion over the TiO2–Al2O3 supported Mo catalysts, in particular for the 4,6-dimethyl-DBT, is much higher than that obtained over Al2O3 supported Mo catalyst. The ratio of the corresponding cyclohexylbenzene (CHB)/biphenyl (BP) derivatives is increased over the Mo/TiO2–Al2O3. This indicates that the prehydrogenation of an aromatic ring plays an important role in the HDS of DBT derivatives over TiO2–Al2O3 supported catalysts.  相似文献   

13.
李静  张启俭  齐平  韩丽  邵超 《工业催化》2017,25(6):19-23
二甲醚是一种理想的氢载体,可用于解决氢的储存和运输。以Pt/TiO_2为部分氧化催化剂,结合Ni/Al_2O_3重整催化剂,考察钛前驱体和焙烧温度对二甲醚部分氧化重整制氢反应的影响。结果表明,以Ti(C4H9O)4为原料制备的TiO_2为金红石相,Ti(SO4)2或Ti O(OH)2为原料制备的TiO_2为锐钛矿相;以Ti(C4H9O)4为原料制备的Pt/TiO_2-E催化剂催化性能略好,转化率接近100%,H2收率约90%,表明金红石相TiO_2负载的Pt催化剂略佳;以Ti(SO4)2为原料制备的Pt/TiO_2-S催化剂500℃焙烧可获得金红石相TiO_2。与Pt/Al_2O_3催化剂相比,Pt/TiO_2催化剂具有更好的催化性能,H2收率超过90%,而Pt/Al_2O_3催化剂H2收率约80%。  相似文献   

14.
Co–Mo model sulfide catalysts, in which CoMoS phases are selectively formed, were prepared by means of a CVD technique using Co(CO)3NO as a precursor of Co. It is shown by means of XPS, FTIR and NO adsorption that CoMoS phases form selectively when the Mo content exceeds monolayer loading. A single exposure of MoS2/Al2O3 to a vapor of Co(CO)3NO at room temperature fills the edge sites of the MoS2 particles. It is suggested that the maximum potential HDS activity of MoS2/Al2O3 and Co–Mo/Al2O3 catalysts can be predicted by means of Co(CO)3NO as a “probe” molecule. An attempt was made to determine the fate of Co(CO)3NO adsorbed on MoS2/Al2O3. The effects of the support on Co–Mo sulfide catalysts in HDS and HYD were investigated by use of CVD-Co/MoS2/support catalysts. XPS and NO adsorption showed that model catalysts can also be prepared for SiO2-, TiO2- and ZrO2-supported catalysts by means of the CVD technique. The thiophene HDS activity of CVD-Co/MoS2/Al2O3, CVD-Co/MoS2/TiO2 and CVD-Co/MoS2/Al2O3 is proportional to the amount of Co species interacting with the edge sites of MoS2 particles or CoMoS phases. It is concluded that the support does not influence the HDS reactivity of CoMoS phases supported on TiO2, ZrO2 and Al2O3. In contrast, CoMoS phases on SiO2 show catalytic features characteristic of CoMoS Type II. With the hydrogenation of butadiene, on the other hand, the Co species on MoS2/TiO2, ZrO2 and SiO2 have the same activity, while the Co species on MoS2/Al2O3 have a higher activity.  相似文献   

15.
采用并流共沉淀法制备Ni负载质量分数为15%的Ni/Al2O3催化剂,用于CO加氢甲烷化反应。结合紫外可见光漫反射、氢气程序升温还原、N2物理吸附-脱附和X射线粉末衍射等技术,考察焙烧温度对催化剂结构、活性与稳定性的影响。结果表明,低温[(350-500)℃]焙烧的样品中活性组分Ni主要以孤立的Ni O物种和高分散的无定形Ni O物种存在,相应的还原态样品中Ni粒子尺寸较小,是其新鲜态样品低温活性较高的主要原因。800℃焙烧的样品中活性组分Ni主要以高分散的无定形Ni O物种和Ni Al2O4尖晶石微晶形式存在于催化剂表面,活性组分Ni与载体Al2O3间的作用力较强,稳定性较高,且经过800℃水热老化处理10 h后仍具有较大的比表面积(125 m2·g-1),是其具有较佳低温活性同时突显良好水热稳定性的主要原因。  相似文献   

16.
李礼 《无机盐工业》2013,45(8):27-29
采用分光光度法研究了三氧化二铝的pH-吸光度(A)曲线,确定了铝的沉积pH范围为4.0~10.5;研究了沉积pH和沉积时间对产品颜料性能的影响。采用XRD分析了三氧化二铝在不同pH条件下沉积的晶型,在酸性条件下沉积为无定型,碱性条件下沉积为勃姆石型;还研究了不同pH下沉积的三氧化二铝的比表面积,结果表明在碱性和酸性条件下,三氧化二铝比表面积分别为69.71 m2/g和37.80 m2/g。采用电子能谱对二氧化钛样品表面结构进行表征,2p电子轨道结合能的变化表明铝以Al-O-Ti键的形式结合在二氧化钛表面。  相似文献   

17.
Alumina–titania supports containing 5–50 wt.% of TiO2 were prepared by coprecipitation method using inorganic precursors (sodium aluminate and titanium chloride). DTA-TGA, XRD, SEM, TPDNH3, and IR spectroscopy were used to characterise these materials. The study shows that the promoting effect of nickel on the HDS activity of molybdenum catalysts supported on Al2O3TiO2 is significantly lower than that for molybdenum catalyst supported on Al2O3, and depends on the TiO2 content. The SEM results show that in the case of rich Al support (20 wt.% of TiO2) molybdenum was aggregated on the external surface of the catalyst, whereas it was uniformly dispersed on the external surface of alumina. Results also show that molybdenum is preferably supported on aluminum oxide. Application of Al2O3TiO2 oxides enhances the HDN activity of nickel–molybdenum catalysts. The highest HDN efficiency was obtained for the NiMo/Al2O3TiO2 catalyst containing 50 wt.% of TiO2. HDN activity was found to depend on protonic acidity and anatase content.  相似文献   

18.
The present paper gives a detailed review of the different studies under investigation in our laboratory concerning the use of TiO2 and TiO2–Al2O3 composites prepared by chemical vapor deposition (CVD) as support for sulfide catalysts in the HDS of dibenzothiophene (DBT) derivatives. The supports investigated here are: TiO2 (from Degussa, 50 m2/g), Al2O3 (Nikki, 186 m2/g) and TiO2–Al2O3 supports prepared by CVD of TiCl4 on alumina. Using several characterization techniques, we have demonstrated that the support composite presents a high dispersion of TiO2 over γ-Al2O3 without forming precipitates up to ca. 11 wt.% loading. Moreover, the textural properties of the support composite are comparable to those of alumina. XPS investigations of Mo and NiMo catalysts supported on the different carriers show that Mo-oxide species exhibit a higher degree of sulfidation on the surface of TiO2 and TiO2–Al2O3 than on alumina. The HDS tests of 4,6-DMDBT under mild operating conditions (573 K, 3 MPa) show that sulfide catalysts supported on the composite support (ca. 11 wt.%) are more active than those supported on to TiO2 or Al2O3. This higher HDS catalytic activity is attributed to the promotion of the hydrodesulfurization pathway, whereby the pre-hydrogenation of one of the aromatic rings adjacent to the thiophenic one may reduce the steric hindrance caused by the two methyl groups adjacent to the sulfur atom during the C–S bond cleavage.  相似文献   

19.
M. Dat  H. Imai  S. Tsubota  M. Haruta 《Catalysis Today》2007,122(3-4):222-225
In situ FT-IR measurements for Au/TiO2 and Au/Al2O3 have been carried out under the flow condition of CO oxidation at atmospheric pressure. It has been found that the Au particles remain neutral (Au0) in the presence of oxygen, while negatively charged particles (Auδ) is formed in the absence of oxygen, as a result of the charge transfer from the oxygen vacancies. Moisture did not significantly affect the adsorption states of CO over Au/TiO2 and Au/Al2O3. Enhancement of the CO2 production by moisture was observed over Au/Al2O3, which is accompanied by the decomposition of carbonate-like species by moisture.  相似文献   

20.
考察过渡金属Ni对Pd/Al_2O_3催化剂甲烷催化燃烧活性的影响以及过渡金属负载量及循环条件对甲烷降解性能的影响,采用扫描电镜、N_2吸附-脱附以及H_2程序升温还原技术对催化剂进行表征。结果表明,过渡金属Ni的添加对催化剂在(375~475)℃下的甲烷催化燃烧活性产生影响。催化剂经多次重复使用后,催化燃烧活性提高。分析原因为经过渡金属Ni改性后,可与载体形成NiAl_2O_4尖晶石,促进活性组分形成较小晶粒,并改善活性组分分散度,提高催化剂催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号