首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Core/shell nanoparticles with lipid core were prepared and characterized as pH-sensitive delivery system of anticancer drug. The lipid core is composed of drug-loaded lecithin and the polymeric shell is composed of Pluronics (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) tri-block copolymer, F-127). Based on the preparation method in the previous report by us, the freeze-drying of drug-loaded lecithin was performed in the F-127 aqueous solution containing trehalose used as a cryoprotectant to form stabilized core/shell nanoparticles. For the application of core/shell nanoparticles as a pH-sensitive drug delivery system for anticancer drug, doxorubicin was loaded into the core/shell nanoparticles and the drug loading amount and drug release behavior in response to pH change were observed.  相似文献   

2.
The bioceramics, hydroxyapatite (HAP), is a material which is biocompatible to the human body and is well suited to be used in hyperthermia applications for the treatment of bone cancer. We investigate the substitution of iron and manganese into the hydroxyapatite to yield ceramics having the empirical formula Ca9.4Fe0.4Mn0.2(PO4)6(OH)2. The samples were prepared by the co-precipitation method. The formation of the nanocrystallites in the HAP structure as the heating temperatures were raised to obtain a glass–ceramic system are confirmed by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and electron spin resonance (ESR). TEM images show the core/shell structure of the nanoparticles, with the core being formed by the ferrites and the shell by the hydroxyapatite. The ED patterns indicate the nanoparticles formed at 500 °C have an amorphous structure while the nanoparticles formed at 1000 °C are crystalline. ESR spectroscopy indicated that the Fe3+ ions have a g-factor of 4.23 and the Mn2+ ions have a g-factor of 2.01. The values of the parameters in the spin Hamiltonian which describes the interaction between the transition metal ions and the Ca2+ ions, indicate that the Mn2+ ion substitute into the Ca2+ sites which are ninefold coordinated, i.e., the Ca(1) sites.  相似文献   

3.
Jin YH  Seo SD  Shim HW  Park KS  Kim DW 《Nanotechnology》2012,23(12):125402
Monodispersed core/shell spinel ferrite/carbon nanoparticles are formed by thermolysis of metal (Fe3+, Co2+) oleates followed by carbon coating. The phase and morphology of nanoparticles are characterized by x-ray diffraction and transmission electron microscopy. Pure Fe3O4 and CoFe2O4 nanoparticles are initially prepared through thermal decomposition of metal–oleate precursors at 310 degrees C and they are found to exhibit poor electrochemical performance because of the easy aggregation of nanoparticles and the resulting increase in the interparticle contact resistance. In contrast, uniform carbon coating of Fe3O4 and CoFe2O4 nanoparticles by low-temperature (180 degrees C) decomposition of malic acid allowed each nanoparticle to be electrically wired to a current collector through a conducting percolative path. Core/shell Fe3O4/C and CoFe2O4/C nanocomposite electrodes show a high specific capacity that can exceed 700 mAh g(-1) after 200 cycles, along with enhanced cycling stability.  相似文献   

4.
Magnetic nanoparticles with core/shell structures   总被引:1,自引:0,他引:1  
Magnetic nanoparticles with core/shell structures are an important class of functional materials, possessing unique magnetic properties due to their tailored dimensions and compositions. This paper reviews mainly our recent advances in the preparation and characterizations of core/shell structured magnetic materials, focusing in nonmagnetic, antiferromagnetic, or ferro/ferri-magnetic shell coated magnetic core particles. And some of the unique properties of core-shell materials and their self-assembly are presented. Shell layers are shown to serve various functions. A broad demonstration of the successful blend of these types of materials synthesis, microstructural evolution and control, new physics and novel applications that is central to research in this field is presented.  相似文献   

5.
Quantum dots (QD) of a CdSe-ZnS core-shell structure are coated with silica spheres to improve their stability in biological buffers and biocompatibility in fluorescence imaging. We found that it was critical to transfer quantum dots from organic phase to aqueous phase before the silica shell growth process. As a result, high quality CdSe-ZnS-SiO2 core-shell-shell nanoparticles were prepared in high yields and their size and distribution are characterized with transmission electron microscopy and dynamic light scattering, which yielded uniform sizes and narrow polydispersity. Single particle fluorescence spectroscopy on the silica-protected quantum dots showed they were stronger emitters with consistent fluorescence intensity and "on-off" behaviors than bare CdSe-ZnS nanocrystals.  相似文献   

6.
Yang J  Lee J  Kang J  Chung CH  Lee K  Suh JS  Yoon HG  Huh YM  Haam S 《Nanotechnology》2008,19(7):075610
We synthesized novel fluorescent magnetic silica nanoparticles (FMSNPs) containing large magnetic components for biomedical application. By employing assemblies of magnetic nanoparticles as kernels against FMSNPs, both the saturation of magnetization and the magnetic resonance (MR) signal intensity were significantly enhanced. Furthermore, the cellular binding of FMSNPs was improved by introducing a positive charge on the surface of the FMSNPs, and fluorescent dyes on the surface of FMSNPs enable optical imaging of sub-cellular regions.  相似文献   

7.
刘威  钟伟  都有为 《材料导报》2007,21(3):59-62
核/壳结构复合纳米材料是具有特殊性能的功能材料,是由一种纳米材料通过化学键或其他相互作用将另一种纳米材料包覆起来形成的纳米尺度的有序组装结构.这种结构可以产生单一纳米粒子无法得到的许多新性能,因而具有许多不同于核、壳材料的独特的光、电、磁、催化等物理和化学性质.主要介绍了核/壳型复合纳米材料的特点、形成机理以及制备方法,并结合最近的科研工作对其研究进展进行了综述.  相似文献   

8.
Semiconducting polymers have previously been used as the transduction material in x-ray dosimeters, but these devices have a rather low detection sensitivity because of the low x-ray attenuation efficiency of the organic active layer. Here, we demonstrate a way to overcome this limitation through the introduction of high density nanoparticles having a high atomic number (Z) to increase the x-ray attenuation. Specifically, bismuth oxide (Bi(2)O(3)) nanoparticles (Z?=?83 for Bi) are added to a poly(triarylamine) (PTAA) semiconducting polymer in the active layer of an x-ray detector. Scanning electron microscopy (SEM) reveals that the Bi(2)O(3) nanoparticles are reasonably distributed in the PTAA active layer. The reverse bias dc current-voltage characteristics for PTAA-Bi(2)O(3) diodes (with indium tin oxide (ITO) and Al contacts) have similar leakage currents to ITO/PTAA/Al diodes. Upon irradiation with 17.5?keV x-ray beams, a PTAA device containing 60?wt% Bi(2)O(3) nanoparticles demonstrates a sensitivity increase of approximately 2.5 times compared to the plain PTAA sensor. These results indicate that the addition of high-Z nanoparticles improves the performance of the dosimeters by increasing the x-ray stopping power of the active volume of the diode. Because the Bi(2)O(3) has a high density, it can be used very efficiently, achieving a high weight fraction with a low volume fraction of nanoparticles. The mechanical flexibility of the polymer is not sacrificed when the inorganic nanoparticles are incorporated.  相似文献   

9.
10.
We have extended the use the aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. The aptamers were selected using a cell-based SELEX strategy in our laboratory for cancer cells that, when utilized in this method, allow for the selective recognition of the cells from complex mixtures including fetal bovine serum samples. Aptamer-conjugated magnetic nanoparticles were used for the selective targeting cell extraction, and aptamer-conjugated fluorescent nanoparticles were employed for sensitive cellular detection. Employing both types of nanoparticles allows for selective and sensitive detection not possible by using the particles separately. Fluorescent nanoparticles amplify the signal intensity versus a single fluorophore label resulting in improved sensitivity. In addition, aptamer-conjugated magnetic nanoparticles allow for extraction and enrichment of target cells not possible with other separation methods. Fluorescent imaging and a microplate reader were used for cellular detection to demonstrate the wide applicability of this methodology for medical diagnostics and cell enrichment and separation.  相似文献   

11.
High-quality zinc oxide (ZnO) nanowires were synthesized using the atmospheric chemical vapor deposition technique and were appropriately characterized. Subsequently, the nanowire surface was covalently grafted with 1-pyrenebutyric acid (PBA) fluorophore, and surface-sensitive X-ray photoelectron spectroscopy and Fourier transform infrared-attenuated total reflectance spectroscopy were utilized to confirm the functionalization of 1-pyrenebutyric acid on the nanowire surface. Additionally, photoluminescence (PL) measurements were used to evaluate the optical behavior of pristine nanowires. Through fluorescence quenching of 1-pyrenebutyric acid by p-nitrophenol, a detection limit of 28 ppb was estimated. Based on these findings, ZnO nanowires functionalized with 1-pyrenebutyric acid are envisaged as extremely sensitive platforms for the ultra-trace detection of p-nitrophenol in biological systems.  相似文献   

12.
We developed nanoparticles with tailored magnetic properties for direct and sensitive detection of biomolecules in biological samples in a single step. Thermally blocked nanoparticles obtained by thermal hydrolysis, functionalized with specific ligands, are mixed with sample solutions, and the variation of the magnetic relaxation due to surface binding is used to detect the presence of biomolecules. The binding significantly increases the hydrodynamic volume of nanoparticles, thus changing their Brownian relaxation frequency which is measured by a specifically developed AC susceptometer. The system was tested for the presence of Brucella antibodies, a dangerous pathogen causing brucellosis with severe effects both on humans and animals, in serum samples from infected cows and the surface of the nanoparticles was functionalized with lipopolysaccharides (LPS) from Brucella abortus. The hydrodynamic volume of LPS-functionalized particles increased by 25-35% as a result of the binding of the antibodies, measured by changes in the susceptibility in an alternating magnetic field. The method has shown high sensitivity, with detection limit of 0.05 microg x mL(-1) of antibody in the biological samples without any pretreatment. This magnetic-based assay is very sensitive, cost-efficient, and versatile, giving a direct indication whether the animal is infected or not, making it suitable for point-of-care applications. The functionalization of tailored magnetic nanoparticles can be modified to suit numerous homogeneous assays for a wide range of applications.  相似文献   

13.
Nano-scale rods and particles having the axes of fivefold symmetry, i.e., pentagonal nanorods and nanoparticles, are theoretically and experimentally investigated. Such objects possess elastic strains and mechanical stresses. In the present research a new mechanism of stress relaxation in nanorods and nanoparticles is considered. The mechanism is implemented by a formation of a surface layer with crystal lattice mismatch. The elastic fields and energies for nanorods and nanoparticles with the mismatched layers are calculated in the framework of the disclination model. The optimal mismatch parameter giving the maximal energy release is determined. The threshold radius as the minimal radius of nanorods or nanoparticles for which the formation of the layer is energetically favorable, is found. The threshold radius is approximately 10 nm for nanoparticle and 100 nm for nanorod of typical FCC metal.  相似文献   

14.
A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multi-functionality into a single system, the utilization of hetero-, core/shell and hierarchical nanostructures has become the key issue for building such devices. ZnS, due to its direct wide bandgap, high index of refraction, high transparency in the visible range and intrinsic polarity, is one of the most useful semiconductors for a wide range of electronics applications. This article provides a dense review of the state-of-the-art research activities in one-dimensional (1D) ZnS-based hetero-, core/shell and hierarchical nanostructures. The particular emphasis is put on their syntheses and applications.  相似文献   

15.
We demonstrate an easy and scalable low-temperature process to convert porous ternary complex metal oxide nanoparticles from solution-synthesized core/shell metal oxide nanoparticles by thermal annealing. The final products demonstrate superior electrochemical properties with a large capacity and high stability during fast charging/discharging cycles for potential applications as advanced lithium-ion battery (LIB) electrode materials. In addition, a new breakdown mechanism was observed on these novel electrode materials.
  相似文献   

16.
Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin film bilayers. The main open questions posed by the experimental observations are presented and contrasted to existing theories and models for exchange bias formulated up to date. We also present results of simulations based on a simple model of a core/shell nanoparticle in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and at the interfacial regions, offering new insight on the microscopic origin of the experimental phenomenology. A detailed study of the magnetic order of the interfacial spins shows compelling evidence that most of the experimentally observed effects can be qualitatively accounted within the context of this model and allows also to quantify the magnitude of the loop shifts in striking agreement with the macroscopic observed values.  相似文献   

17.
Differences in the wavelengths of the surface plasmon band of gold nanoparticles (AuNP)--before and after particle aggregation--are widely used in bioanalytical assays. However, the gold surfaces in such bioassays can suffer from exchange and desorption of noncovalently bound ligands and from nonspecific adsorption of biomolecules. Silica shells on the surfaces of the gold can extend the available surface chemistries for bioconjugation and potentially avoid these issues. Therefore, silica was grown on gold surfaces using either hydrolysis/condensation of tetraethyl orthosilicate 1 under basic conditions or diglyceroxysilane 2 at neutral pH. The former precursor permitted slow, controlled growth of shells from about 1.7 to 4.3 nm thickness. By contrast, 3-4 nm thick silica shells formed within an hour using diglyceroxysilane; thinner or thicker shells were not readily available. Within the range of shell thicknesses synthesized, the presence of a silica shell on the gold nanoparticle did not significantly affect the absorbance maximum (~5 nm) of unaggregated particles. However, the change in absorbance wavelength upon aggregation of the particles was highly dependent on the thickness of the shell. With silica shells coating the AuNP, there was a significant decrease in the absorbance maximum of the aggregated particles, from ~578 to ~536 nm, as the shell thicknesses increased from ~1.7 to ~4.3 nm, because of increased distance between adjacent gold cores. These studies provide guidance for the development of colorimetric assays using silica-coated AuNP.  相似文献   

18.
将CeO2纳米粒子负载在介孔氧化硅(W-mSiO2)支撑体上,制备了核壳结构的W-mSiO2/CeO2双相光催化复合颗粒.用X射线衍射、扫描电镜、透射电镜、氮气吸脱附、STEM-EDX mapping、Raman光谱、荧光光谱、紫外-可见漫反射光谱等手段分析样品的结构和性质,考察了复合光催化材料对亚甲基蓝(MB)的光催...  相似文献   

19.
Water soluble semiconductor nanoparticles (NPs) of CdS are prepared at room temperature (~295 K) and under short time ultrasonic irradiation. We present the effect of ultrasonic irradiation on the formation of CdS NPs, and the data is explained by a growth law. It is found that the growth is governed by surface diffusion at the solid–liquid interface. CdS NPs are easily coated with relatively wide bandgap semiconductor ZnS. The interaction of core/shell CdS/ZnS NPs with a different amount of lyophilisates of human serum is studied by means of the absorption spectrum and zeta potential.  相似文献   

20.
《Advanced Powder Technology》2014,25(5):1520-1526
Maghemite nanoparticles (MNPs) with a thin layer of polyrhodanine (PRd) at the surface were synthesized via chemical oxidative polymerization of rhodanine monomer at the MNPs surface in the presence of ferric chloride as oxidant. X-ray diffraction (XRD) pattern gave direct evidence that the synthesized nanoparticles are crystalline maghemite of about 8 nm in size. Magnetization of the particles versus an applied magnetic field exhibited no hysteresis loop, indicated superparamagnetic behavior in the particles. Transmission electron microscopy (TEM) together with Fourier-transform infrared (FT-IR) spectroscopy were used to determine the morphology and the chemical structure of the magnetic core and the polymeric shell. Through the microscopy analysis the shell thickness was estimated to be about 1.5 nm, whereas through thermogravimetric analysis (TGA) it was estimated to be about 0.6 nm. Moreover inductively coupled plasma optical emission spectroscopy (ICP-OES) measurements revealed that the oxidant residue in the polymer backbone is ca. 4 wt.%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号