首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel resistance element welding technology was applied to join 6061 Al alloy and uncoated 22MnMoB boron steel. To conduct the resistance element welding process, a technological hole was drilled in the Al sheet into which a Q235 steel rivet was inserted. Resistance spot welding was carried out at the rivet. The mechanical properties, fracture morphology, nugget formation process, dynamic resistance, microstructure, and hardness distribution of the resistance element welding were investigated. Traditional resistance spot weld joints were also prepared for comparison. Resistance spot welding could barely join Al 6061 and boron steel, and had a maximum tensile shear force of less than 1000 N. Novel resistance element welding could join the metals reliably with a maximum tensile shear force of over 7000 N and a relatively high toughness. Nugget formed at the interface of rivet and steel acted as loading position, and IMC interlayer connected rivet and aluminum.  相似文献   

2.
The microstructure and properties of aluminium–zinc coated steel lap joints made by a modified metal inert gas CMT welding–brazing process was investigated. It was found that the nature and the thickness of the high-hardness intermetallic compound layer which formed at the interface between the steel and the weld metal during the welding process varied with the heat inputs. From the results of tensile tests, the welding process is shown to be capable of providing sound aluminium–zinc coated steel joints.  相似文献   

3.
Thin sheets of aluminum alloy 6061-T6 and one type of Advanced high strength steel, transformation induced plasticity (TRIP) steel have been successfully butt joined using friction stir welding (FSW) technique. The maximum ultimate tensile strength can reach 85% of the base aluminum alloy. Intermetallic compound (IMC) layer of FeAl or Fe3Al with thickness of less than 1 μm was formed at the Al–Fe interface in the advancing side, which can actually contribute to the joint strength. Tensile tests and scanning electron microscopy (SEM) results indicate that the weld nugget can be considered as aluminum matrix composite, which is enhanced by dispersed sheared-off steel fragments encompassed by a thin intermetallic layer or simply intermetallic particles. Effects of process parameters on the joint microstructure evolution were analyzed based on mechanical welding force and temperature that have been measured during the welding process.  相似文献   

4.
The laser–tungsten inert gas hybrid welding method was adopted to realize the welding process between Q460 high-strength steel and 6061 aluminum alloy. The influence of the dual heat source on the mechanical properties and microstructure of the welded joints are discussed. In addition, the effects of including a copper–zinc interlayer on the microstructure, elemental distribution, and mechanical properties of welded joints are also studied. The results show that the mechanical properties of the welded joints are influenced by the relative heat inputs of the two heat sources and the Cu-Zn interlayer. The braze welded joint fabricated without a Cu-Zn interlayer fractured at an Al-Fe intermetallic compound (IMC) layer formed at the interface, whereas the braze welded joint fabricated with a Cu-Zn interlayer fractured at an Al-Cu IMC layer formed at the interface. Comparisons show that the maximum tensile shear load of the brazed welded joint with the Cu-Zn interlayer was increased by about 20% relative to that formed without the interlayer. The formation of Al-Fe IMC layer in the deep penetration joint was inhibited by the combined effect of the dual heating sources and the Cu-Zn interlayer.  相似文献   

5.
Dissimilar metals of AA6013 aluminum alloy and Q235 low-carbon steel of 2.5 mm thickness were butt joined using a 10 kW fiber laser welding system with ER4043 filler metal. The study indicates that it is feasible to join aluminum alloy to steel by butt joints when zinc layer was hot-dip galvanized at the steel’s groove face in advance, and better weld appearance can be obtained at appropriate welding parameters. The joints had dual characteristics of a welding joint on the aluminum side and a brazing joint on the steel side. The smooth Fe2Al5 layer adjacent to the steel matrix and the serrated-shape FeAl3 layer close to the weld metal were formed at the brazing interface. The overall thickness of Fe–Al intermetallic compounds layers produced in this experiment were varied from 1.8 μm to 6.2 μm at various welding parameters with laser power of 2.85–3.05 kW and wire feed speed of 5–7 m/min. The Al/steel butt joints were failed at the brazing interface during the tensile test and reached the maximum tensile strength of 120 MPa.  相似文献   

6.
Abstract

Type 5052 aluminium alloy was joined to type 304 austenitic stainless steel via a continuous drive friction welding process. The joint strength increased, and then decreased after reaching a maximum value, with increasing friction time. Joint strength depended on the size and shape of the tensile testpiece. Friction weldability could be estimated by electrical resistmetry. The process of friction welding between the aluminium alloy and the stainless steel is proposed to evolve as follows: welding progresses from the outer to the inner region; an unbonded region is retained at the centre of the weld interface with shorter friction time; longer friction time causes the formation of an intermetallic reaction layer at the weld interface; and the reaction layer grows as the friction time increases. When the thickness of the reaction layer increased above a critical value, the joint was brittle and fractured at the weld interface. The joint was sound when there was no unbonded region and a thin reaction layer formed along the entire weld interface.  相似文献   

7.
采用激光熔钎焊技术对AZ31B镁合金与Q235钢进行异种金属搭接实验。添加Ni中间层协调镁合金与钢的冶金连接,通过外加纵向交变磁场调控接头成形及组织,以期提高接头的力学性能。结果表明:添加Ni中间层后接头类熔焊区IMC层为树枝状或连续纳米级层状AlNi相,实现冶金连接。外加交变磁场后Fe-Ni固溶体厚度减小且延伸进镁侧焊缝中,沟壑状的Fe-Ni固溶体增加了界面的结合面积。通过测量发现接头实际界面连接长度与拉剪线载荷有很大的联系。外加交变磁场后激光熔钎接头实际界面连接长度与拉剪线载荷随着磁场强度的增加呈现先增大后减小的趋势。当激光功率P=1250 W,焊接速度v=20 mm·s-1,磁场强度B=10 mT,磁场频率f=35 Hz时,添加Ni中间层协调镁合金与钢的冶金连接,外加纵向交变磁场优化接头焊缝成形,接头拉剪线载荷最高,达到163 N/mm。  相似文献   

8.
由于铝、钢的物理化学性质存在巨大差异,铝/钢的连接是焊接领域的难点问题。搅拌摩擦焊是低热输入的固态连接方法,能够有效控制铝/钢金属间化合物的生长,且搅拌针强烈的搅拌作用可增加铝/钢异种材料机械咬合程度,得到高质量的铝/钢焊接接头,铝/钢搅拌摩擦焊已经成为了焊接领域的热点问题。文中综述了铝/钢搅拌摩擦焊国内外研究现状,涉及到接头形式、焊缝成形、焊接工艺和力学性能,着重介绍了铝/钢搅拌摩擦焊接头的连接机制,并围绕铝/钢搅拌摩擦焊存在的两大问题,对铝/钢搅拌摩擦焊新技术进行总结,并进一步提出了铝/钢搅拌摩擦焊的基础研究方向。  相似文献   

9.
The joint properties of dissimilar formed Al alloys, cast Al alloy and wrought Al alloy, were examined with various welding conditions. Friction stir welding method could be applied to join dissimilar formed Al alloys which had different mechanical properties without weld zone defects under wide range of welding condition.The weld zone of dissimilar formed Al alloy exhibited the complex structure of the two materials and mainly composed of the retreating side material.The mechanical properties also depended on the dominant microstructure of the weld zone with welding conditions. The different mechanical properties of the weld zone with welding conditions were related to the behavior of the precipitates of wrought Al alloy and Si particles of cast Al alloy. The higher mechanical properties of the weld zone were acquired when a relatively harder material, wrought Al alloy, was fixed at the retreating side.  相似文献   

10.
High-alloyed stainless steel of 18-8 type and duralumin are not directly weldable due to significant differences in their properties. The results of structural investigations of the joints between the two materials, obtained by a previously developed method of electron beam welding with an Ag-2 wt% Mg alloy filler metal shim, are presented in this paper. The microstructure of the weld is diphasic, being composed of supersaturated Ag in Al solid solution and also an Ag2Al phase. At the base materials and weld boundaries interstitial layers are crystallized in the form of solid solutions while brittle intermetallic compounds do not appear. On the basis of presented results a mechanism for the joint formation is proposed.  相似文献   

11.
采用真空扩散焊接技术进行镁合金(MB2)与铝合金(LY12)的焊接,采用超声波无损检测,电子探针、X射线衍射和扫描电镜等手段研究了焊接温度对焊接接头界面附近组织结构的影响,分析了界面反应物的生成机理。结果表明,随着焊接温度的升高,焊接界面的焊合率提高,在焊接压力为3 MPa、保温时间为100 min的条件下,温度升高到480℃完全焊合,在Al侧和Mg侧分别形成了A1(ss,Mg)和Mg(ss,A1)固溶体,焊接界面形成了Al12Mg17、AlMg、Al3Mg2三种金属间化合物层,其厚度随着焊接温度的升高而增加,其中AlMg层厚度增长得最快,接头断裂发生在金属间化合物层且呈阶梯状断裂。界面扩散区的形成主要由有效物理接触阶段、固溶体形成阶段、金属间化合物相形成阶段以及金属间化合物增长阶段组成。  相似文献   

12.
利用XD^TM法制备了高颗粒含量的Al/TiC预制合金。并采用自制的实验装置对Al/TiC预制合金中的TiC颗粒在静止锌液中的均匀化过程进行了实验研究与分析,建立了TiC颗粒在锌液中均匀化过程的模型。结果表明:当锌液温度低于铝的熔点时,Al/TiC预制合金置于锌液后,发生锌向Al/TiC合金中的扩散,引起Al/TiC合金表层内液相线温度的降低,当这层内Al-Zn合金的液相线温度等于或低于锌液的温度时,Al-Zn合金便处于熔融状态,使TiC颗粒从Al/TiC合金块上脱落,脱落下来的TiC颗粒不断地向锌液内部传输,最终将均匀分布在锌液中。  相似文献   

13.
Resistance spot welding (RSW) is attractive for joining dissimilar materials, especially, aluminium to steel in automotive body. The direct joining of aluminium to steel forms an intermetallic compound (IMC) layer at their interface that dominates mechanical behaviour of the joint. A new formula was developed that considers material inhomogeneities such as the different mechanical properties in the weld such as base metal, heat affected zone (HAZ) and the weld nugget to accurately calculate the minimum weld nugget diameter required to enable pull‐out fracture. The shear strengths of weld regions such as the HAZ and IMC were directly measured and used as inputs to this new formula. The new formula was validated using experimental measurements from six combinations of aluminium–steel welds in comparison with analogous aluminium–aluminium welds. The new derivation was able to accurately predict fracture modes for all material combinations.  相似文献   

14.
ABSTRACT

AlSi12 cladding layer was fabricated on steel plate without zinc coating via cold metal transfer arc deposited technique. The wettability, morphologies, microstructures, and mechanical properties of the cladding layer were investigated. The cladding layer exhibited favourable wettability with steel plate. Large swing amplitude and high swing frequency were the key factors to achieve excellent wettability. The cladding layer was composed of primary Al dendrites and (Al?+?Si) eutectic structure, and the microstructures were refined. Continuous and thin intermetallic compound layer appeared at AlSi12/steel interface, and reliable bonding strength between the cladding layer and steel plate was achieved. The fracture surface exhibited both brittle fracture and ductile fracture.  相似文献   

15.
Fabrication and characterization of cast Al–2Mg alloy matrix composites reinforced with short steel fibers are dealt with in the present study. Three types of steel fiber were used: uncoated, copper coated and nickel coated. All the composites were prepared by the liquid metal route using vortex methods. When tested in tension, all composites exhibited improvement in strength due to high relative strength of steel fibers. The ductility was lowered except for the composite with copper coated fibers. Copper coated fiber reinforced composites gave the highest strength. Higher strength accompanied with appreciable ductility demonstrated by composites with copper coated fibers is attributed to the solid solution and fiber strengthening as well as good bonding at the interface. Composites reinforced with uncoated and Ni coated steel fibers did not exhibit strengthening to the level exhibited with copper coated fibers because brittle intermetallic phases are formed at the interface. These phases promote initiation and facilitate propagation of cracks. The observed fracture mechanism of composites was dimple formation, fiber breakage and pullout of fibers. Fracture surface of uncoated and Ni coated composites showed extensive pull out of fibers as well as fiber breakage confirming the above inference. In case of the copper coated composites dimple formation and coalescence was more extensive. EDX analysis showed a build up Cu, Ni, and Fe at the interface.  相似文献   

16.
The effect of solute additions of titanium, titanium and niobium and phosphorus on interstitial-free steels on Fe-Zn phase formation after immersion in a 0.20 wt% Al-Zn bath was studied to determine the morphology and kinetics of the individual Fe-Zn phases formed. These results were contrasted to the previous study using a pure zinc (0.00 wt% Al) bath in Part I. It was found that in the 0.20 wt% Al-Zn bath, an iron-aluminide inhibition layer prevented uniform attack of the steel substrate. Instead, localized Fe-Zn phase growth occurred, termed outbursts, containing a two-phase layer morphology. Delta-phase formed first, followed by gamma-phase. Zeta-phase did not form in the 0.20 wt% Al-Zn bath, in contrast with zeta-phase formation in the pure zinc bath. As in the pure zinc bath, the growth kinetics of the total layer was controlled by the Fe-Zn phase in contact with the liquid zinc during galvanizing. For the 0.20 wt% Al-Zn bath, the Fe-Zn phase in contrast with the liquid zinc was the delta-phase, whereas the zeta-phase was in contact with liquid zinc in the pure zinc bath. The delta-phase followed t1/2 parabolic growth, while the gamma-phase showed essentially no growth after its initial formation. Titanium and titanium + niobium solute additions, which enhance grain-boundary reactivity, resulted in more rapid growth kinetics of the gamma- and delta-phases. Phosphorus additions, which decrease grain-boundary reactivity, generally increased the incubation time and retarded the growth rate of the gamma-phase. These results further confirm the concept that solute grain-boundary reactivity is primarily responsible for Fe-Zn phase growth during galvanizing in a liquid Zn-Al bath in which an iron aluminide inhibition layer forms prior to Fe-Zn phase formation. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
The characteristics of laser lap welding of AZ31B magnesium alloy to Zn-coated steel were investigated. Welding was difficult when the laser beam was irradiated onto the AZ31B alloy and the processing parameters were set to obtain a keyhole welding mode. The difference in the physical properties between the two materials resulted in unstable welding process particularly when the laser beam penetrated into the steel specimen and a keyhole was formed therein. By switching to a conduction mode, the process stability was improved and successful welding could be achieved because the liquid metal film remained unbroken and the laser beam did not penetrate into the material. A 25 mm wide joint failed in tensile shear testing at loads exceeding 6000 N. This high joint strength was attributed to the formation of a 450 nm thick layer of Fe3Al intermetallic compound on the steel surface as a result of the interaction between Al from the AZ31B alloy and Fe. The presence of Zn-coating layer was essential to eliminate the negative effects of oxides on the joining process.  相似文献   

18.
Introducing the aluminum alloy into the steel body structure allows the reduction in the vehicle weight and improves the fuel efficiency. However, it is a still great challenge to weld aluminum alloy to steel due to their differences in the physical, mechanical and metallurgical properties. In this study, aluminum alloy 6061-T6 was welded with zinc coated low carbon steel by cold metal transfer (CMT). Effects of the pre-setting gap at the interface of aluminum alloy sheet and steel sheet as well as the offset distance of the electrode torch from the aluminum alloy sheet edge on the weld qualities were investigated. The tensile shear tests were carried out to evaluate the mechanical property of the welds. In addition, optical micrograph, scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS) were used to analyze the weld microstructure. Experimental results indicated that the intermetallic layer thickness in the CMT welds was well controlled below the 10 μm, which facilitates the achievement of relatively high weld strength. Furthermore, a pre-setting gap and an appropriate post-weld heat treatment can improve the weld strength. However, the weld strength was decreased by increasing the offset distance of arc torch. In addition, the pre-setting gap also affects the intermetallic layer morphology. The formation of brittle AlxFey could be suppressed by the presence of the remained zinc in the steel side.  相似文献   

19.
Experimental investigations on butt welding of magnesium alloy to steel by hybrid laser–tungsten inert gas (TIG) welding with Cu–Zn alloy interlayer are carried out. The results show that the gradient thermal distribution of hybrid laser–TIG welding, controlled by offset adjustment, has a noticeable effect on mechanical properties and microstructure of the joints. Particularly, at the offset of 0.2 mm, defect-free joints are obtained, and the tensile strength could attain a maximum value of 203 MPa. Moreover, the fracture of the joint with the 0.2 mm offset happens in the weld seam of Mg alloy instead of the Mg/Fe interface. Owning to the addition of the Cu–Zn alloy interlayer, a metallurgical bonding between Mg alloy and steel is achieved based on the formation of intermetallic compounds of CuMgZn and solid solutions of Cu and Al in Fe. Meanwhile, the same element distribution tendency of Fe and Al indicates the intimate interaction between Fe and Al in current experimental conditions.  相似文献   

20.
The tensile‐shear test was conducted for the evaluation of shear load and failure mechanisms of dissimilar friction stir spot weldments of AA6061‐T6/DP590 dual‐phase steel sheets. The joints were fabricated using a penetrated pin into the steel sheet (lower member). Such design resulted in the formation of a hook at the joint interface and an intermetallic compound layer (IMC) between the upper part of the hook and Al‐side. A maximum tensile‐shear load of ~2950 N was measured for the joint fabricated using a heat input of ~10 kJ; a lower strength was noted by varying the heat input. Partial plug was the failure mechanism in all joints. However, three different types of crack propagation paths were found depending on the heat input: along the interface between 6061 Al and IMC layer, thru 6061 Al near the joint interface, or within the IMC layer using relatively low, moderate, and high heat inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号