首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microstructure, hardness, tensile and high cycle fatigue (HCF) properties of the welded dissimilar joints of Ti60 and TC17 titanium alloys had been investigated in this study. A significant microstructural change was observed to occur after welding, with rod-like α and β phases in the fusion zone (FZ), equiaxed α phases, fine α laths and β phases in the heat-affected zone (HAZ) of TC17 side and acicular martensite α' phases+“ghost” α phases in the HAZ of Ti60 side. The microhardness across the joints exhibited an inhomogeneous distribution with the highest hardness of ~404 HV in FZ and the lowest hardness of ~304 HV in base material (BM) of Ti60. All the joints tested in tension fractured at BM of Ti60 side. Fatigue limits of the joints at 107 cycles were 425?MPa at room temperature and 380?MPa at 400?°C, respectively. Welding micropores were found to be the main source of fatigue crack initiation.  相似文献   

2.
The effects of post weld heat treatment (PWHT) and oil quenching on the metallurgical and mechanical properties of the duplex (UNS S31803) welded joints were evaluated at three different temperatures namely 1080, 1150 and 1200 °C. The microstructural variation, austenite/ferrite phase changes, grain size measurements and microhardness aspects of the welded joint were observed. The fraction of ferrite and austenite phases was equivalent at 1150 °C. Nickel element was more efficient in controlling the twin phase balance. Finer grain structure was achieved at 1150 °C due to recrystallization effect. Twin phase presence and absence of precipitates were confirmed through XRD and TEM which followed Kurdjumov–Sachs relationship. At a heating pressure of 40 MPa, heating time of 4 s, an upsetting pressure of 80 MPa, and an upsetting time of 2 s during a PWHT at 1150 °C, a 50/50 balance between the duplex phases, fine grains, and increased microhardness were obtained.  相似文献   

3.
The present work has been undertaken to study creep damage in welded joints. The complex dual phase microstructure of 316L welds are simulated by manually filling a mould with longitudinally deposited weld beads. Most of the moulded specimens were then aged for 2000 hours at 600°C. High resolution scanning electron microscopy was extensively used to examine the microstructure of the welded material before and after ageing. Columnar grains of austenite constitute a matrix in which thin dendrites of δ-ferrite can be found. The ageing generates the precipitation of carbides, resulting in less transformation in the material. Smooth and notched creep specimens were cut from the mould and tested at 600°C under different stress levels. The creep life of the simulated welded material is shown to be lower than that of the base material. Microstructural observations reveal that creep cavities are preferentially located along the austenite grain boundaries. This analysis of intergranular damage on test specimens is conducted to obtain a predictive damage law which could be used to calculate the lifetime of welded joints.  相似文献   

4.
In the present study, the microstructure, mechanical properties and corrosion resistance of AISI 316L austenitic stainless steel to ASTM A335-P11 low alloy steel dissimilar joints, which are widely employed in the oil and gas industries especially for manufacturing of heat exchangers over 600°C, were investigated. For this purpose, two filler metals of ER309L and ERNiCrMo-3 were selected to be used with GTAW process. The results of microstructural evaluation revealed that the ERNiCrMo-3 weld metal contains dendritic and interdendritic zones, and the ER309L weld metal microstructure includes skeletal ferrites in an austenitic matrix. The maximum impact fracture energy and microhardness values were obtained for the ERNiCrMo-3 weld metal specimens; however, no significant difference was observed between the tension properties. The corrosion test results showed that the ERNiCrMo-3 has a higher corrosion resistance than ER309L. Finally, it was concluded that ERNiCrMo-3 would be a suitable filler metal for joining AISI 316L to A335-P11 for a variety of applications.  相似文献   

5.
The Co-based alloy/AISI 410 stainless steel dissimilar welded joint was fabricated by the electron beam welding (EBW) technique. The anomalous microstructure containing the element transition zone (ETZ) and/or core of tail-like zone (CTLZ) is in the weld metal (WM) adjacent to the fusion line. The melting temperature difference between the WM and AISI 410 steel, melt stirring effect and element diffusion can trigger the formation of such anomalous microstructure. In particular, the larger distance of the region in WM away from the fusion line, the smaller CTLZ and larger ETZ occurred. Compared with the fine and ellipsoidal precipitates in the as-welded CTLZ, a large number of chain-type clustered precipitates were detected in the CTLZ and ETZ interface after the aging treatment at 566 °C for 1 000 h. The element diffusion under elevated temperature in WM is regarded as the crucial factor for such anomalous microstructure evolution during the aging treatment.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-022-00396-z  相似文献   

6.
In the present study, microstructure and mechanical properties of UNS S32750 super duplex stainless steel (SDSS)/API X-65 high strength low alloy steel (HSLA) dissimilar joint were investigated. For this purpose, gas tungsten arc welding (GTAW) was used in two different heat inputs: 0.506 and 0.86 kJ/mm. The microstructures investigation with optical microscope, scanning electron microscope and X-ray diffraction showed that an increase in heat input led to a decrease in ferrite percentage, and that detrimental phases were not present. It also indicated that in heat affected zone of HSLA base metal in low heat input, bainite and ferrite phases were created; but in high heat input, perlite and ferrite phases were created. The results of impact tests revealed that the specimen with low heat input exhibited brittle fracture and that with high heat input had a higher strength than the base metals.  相似文献   

7.
The effect of postweld heat treatment (PWHT) on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel joints with ER316LMn filler material was investigated. PWHT aging was performed for 1 h at four different temperatures of 600 °C, 760 °C, 870 °C and 920 °C, respectively. The microstructure revealed the sigma phase precipitation occurred in the weld metals heat-treated at the temperature of 870 °C and 920 °C. The PWHT temperatures have the less effect on the tensile strength, and the maximum tensile strength of the joints is about 630 MPa, reaching the 95% of the base metal, whereas the elongation is enhanced with the rise of PWHT temperatures. Meanwhile, the sigma phase precipitation in the weld metals reduces the impact toughness.  相似文献   

8.
The dissimilar butt welded joint of reduced-activation ferritic/martensitic steel (RAF/M) F82H and austenite stainless steel (AISI304 (SUS304)) were studied by friction stir welding. The effect of the position of the steels and tool plunging was considered in order to prohibit the mixing of the F82H and SUS304. When the dissimilar butt welding was performed such that the F82H plate was on the advancing side and the tool was plunged on the F82H side, defect-free joints could be successfully fabricated. Optical microscopy and EDX analysis were used to characterize the dissimilar joint microstructures and the interface. It was confirmed that the dissimilar joint formed no mixed structure and inter-metallic compounds.  相似文献   

9.
Post-weld heat treatment (PWHT) is commonly adopted on welded joints and structures to relieve post-weld residual stresses; and restore the mechanical properties and structural integrity. An electrolytic plasma process (EPP) has been developed to improve corrosion behavior and wear resistance of structural materials; and can be employed in other applications and surface modifications aspects. In this study the effects of PWHT and EPP on the residual stresses, micro-hardness, microstructures, and uniaxial tensile properties are explored on tungsten inert gas (TIG) welded AISI-4140 alloys steel with SAE-4130 chromium–molybdenum alloy welding filler rod. For rational comparison all of the welded samples are checked with nondestructive Phased Array Ultrasonic Testing (PAUT) and to ensure defect-free samples before testing. Residual stresses are assessed with ultrasonic testing at different distances from weld center line. PWHT resulted in relief of tensile residual stress due to grain refinement. As a consequence higher ductility but lower strength existed in PWHT samples. In comparison, EPP-treated samples revealed lower residual stresses, but no significant variation on the grain refinement. Consequently, EPP-treated specimens exhibited higher tensile strength but lower ductility and toughness for the martensitic formation due to the rapid heating and quenching effects. EPP was also applied on PWHT samples, but which did not reveal any substantial effect on the tensile properties after PWHT at 650 °C. Finally the microstructures and fracture morphology are analyzed using scanning electron microscopy (SEM) and optical microscope to study the evolution of microstructures.  相似文献   

10.
The feasibility of dissimilar friction stir welding (FSW) in overlap configuration between Ti–6Al–4V alloy (Ti64) and AISI 304 austenitic stainless steels (304SS) was investigated. Sound joints were achieved when placing titanium as the upper workpiece. Joints were successfully produced by employing a welding speed of 1 mm/s and rotational speeds of 300 and 500 rpm. A lamellar microstructure was formed in the stir zone of Ti64, where grain size was found to increase with increasing rotational speed, and austenitic equiaxed grains were obtained near the interface of 304SS coupon. Energy dispersive X-ray spectroscopy (SEM-EDS) of the interface revealed a thin intermixed region and suggested intermetallic compound formation. Microhardness data in the titanium weld zone for both rotational speeds exhibited slightly lower values than the base material, with the lowest values in the heat affected zone, whereas the microhardness values in the stainless steel side around the weld center were found to be higher than those obtained for the base material.  相似文献   

11.
In the present investigation, an attempt has been made to weld the precipitation hardened Nickel based super alloy Inconel 718 and austenitic stainless steel AISI 316L using Continuous Current Gas Tungsten Arc Welding (CCGTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) process employing ER2553 and ERNiCu-7 fillers. Microstructure examination using optical and SEM analysis clearly witnessed the formation of unmixed zone at the Heat Affected Zone (HAZ) of Inconel 718 for all the joints. The studies showed the absence of deleterious phases in the CCGTA and PCGTA weldments employing ERNiCu-7. Tensile studies corroborated that the fracture occurred at the parent metal of AISI 316L in all the cases. It was inferred from the present study that PCGTA weldments employing ERNiCu-7 exhibited better metallurgical and mechanical properties. This study articulated the effect of filler metals on the structure–property relationships of the weldments.  相似文献   

12.
Abstract

The present paper reports the influence of post-weld heat treatment (PWHT) on microstructure and properties of electron beam welded dissimilar joint. Ti2AlNb and TC11 alloys were used to fabricate the joints. Three PWHTs were applied to the welded joints. The structures were analysed using optical microscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques. The results show that weld metal of the fusion zone is mainly composed of α2 and β phases. As the energy input increases under different PWHTs, the decomposition degree of metastable phases (α′/β) rises, but the tensile strength and impact toughness of the joint reduce. Under each condition, the tensile strength of the joint is higher than that of the TC11 base metal.  相似文献   

13.
A creep–fatigue test with a structural specimen made of Mod. 9Cr–1Mo steel and 316L stainless steel has been carried out and the test results were compared with those of the evaluations by the high temperature design codes of ASME subsection NH and RCC-MR to quantify the conservatism. A specimen with a diameter of 500 mm, height of 440 mm and thickness of 6.3 mm was subjected to creep–fatigue loads with two hours of a hold time at 600 °C and a primary nominal stress of 30 MPa. The creep–fatigue behaviours of the dissimilar metal welds as well as the similar metal welds were investigated and the results of the test were compared with the evaluation results. Bimetallic (direct) transition metal joint and trimetallic transition metal joint for a dissimilar metal weld were employed for a specimen, and their behaviours under a creep–fatigue load were compared. The conservatism of the design codes on the creep–fatigue evaluation at the welded joints as well as at the base metal with an emphasis on Mod.9Cr–1Mo steel are highlighted through comparisons with the results from the observation and the evaluation.  相似文献   

14.
Correlation of microstructure and intergranular stress corrosion cracking (IGSCC) susceptibility for the SA508-52M-316L dissimilar metal weld joint in primary water was investigated by the interrupted slow strain rate tension test following a microstructure characterization. The susceptibility to IGSCC in various regions of the dissimilar metal weld joint was observed to follow the order of Alloy 52 Mb> the heat affected zone of 316L> the dilution zone of Alloy 52 Mw> Alloy 52 Mw weld metal. The chromium-depletion at the grain boundary is the dominant factor causing the high IGSCC susceptibility of Alloy 52 Mb. However, IGSCC initiation in the heat affected zone of 316L is attributed to the increase of residual strain adjacent to the grain boundary. In addition, the decrease of chromium content and increase of residual strain adjacent to the grain boundary increase the IGSCC susceptibility of the dilution zone of Alloy 52 Mw.  相似文献   

15.
张鹏举  陈静青  杨霄 《材料工程》2022,50(11):145-154
对16MnR母材进行激光冲击工艺实验,获得优化的激光冲击工艺参数。对激光-MAG复合焊焊接接头进行表面处理,分析接头激光冲击前后状态的残余应力分布及抗应力腐蚀性能变化。结果表明:对16MnR钢平板经激光冲击处理后,在材料表面最大可引入475μm厚度的塑性变形层,并同时引入-593 MPa的压应力分布。采用优化激光冲击工艺对16MnR钢焊接接头进行表面处理后,可有效减小焊接接头表面的残余拉应力分布。在3.5%NaCl(质量分数)条件下对激光冲击处理前后的接头试样进行慢应变速率应力腐蚀实验,发现激光冲击处理前后16MnR钢焊接接头的应力腐蚀敏感指数I_(SSRT)分别为0.106和0.104,表明激光冲击可以提高接头的抗应力腐蚀能力。  相似文献   

16.
The object of this investigation is to determine the influence of the jet velocity on the weld quality of sheet joints produced via magnetic pulse welding. The use of a suitable high‐speed camera system enables to observe the jet in detail, to determine its velocity during the collision process and to compare them to the achieved qualities (tensile strength, weld seam characteristics) of the welded samples. The results show that the quality of the weld generally correlates with the jet velocity, however the mere consideration of its velocity proves not to be a promising approach for predicting a specific weld quality. It becomes evident that the jet thickness has to be considered, since quality‐critical characteristics of the weld seam appears in greater extent when the jet thickness increases.  相似文献   

17.
The mechanism of the evolution of the deformed microstructure at the earliest stage of annealing where the existence of the lowest length scale substructure paves the way to the formation of the so-called subgrains, has been studied for the first time by X-ray diffraction technique. The study has been performed at high temperature on heavily deformed Ti-modified austenitic stainless steel. Significant changes were observed in the values of the domain size, both with time and temperature. Two different types of mechanism have been proposed to be involved during the microstructural evolution at the earliest stages of annealing. The nature of the growth of domains with time at different temperatures has been modelled using these mechanisms. High-resolution transmission electron microscopy has been used to view the microstructure of the deformed and annealed sample and the results have been corroborated successfully with those found from the X-ray diffraction techniques.  相似文献   

18.
This paper presents the electrochemical performance and microstructural evolution of friction stir welded joint of dissimilar AA1050 and AZ91D in seawater, for potential applications in the transportation industry. The corrosion behavior of the dissimilar weld was compared to the corrosion behavior of the parent materials, and similar welds of each alloy. The experiments were successfully conducted with an H13 hot-working tool steel in butt-joint configuration. The results revealed the presence of intercalated microstructure in the dissimilar weld and homogenous microstructures in the similar welds. The corrosion resistance properties of the parent materials and similar welds were higher than that of the dissimilar weld sample. The dissimilar weld has a current density of 3.83×10−5 A/cm2 and corrosion rate of 9.99×10−4 mm/year; and is most susceptible to corrosion, due to the galvanic coupling between the dissimilar alloys and intermetallic compounds. The similar weld of AA1050 has a current density of 1.99×10−7 A/cm2 and corrosion rate of 1.44×10−3 mm/year, while the similar weld of AZ91D has a current density of 8.58×10−6 A/cm2 and corrosion rate of 1.13×10−1 mm/year.  相似文献   

19.
Electron Backscatter Diffraction (EBSD) studies clearly revealed a different crystallographic structure of the smallest particle size fraction of gas-atomized AISI 316 L stainless steel powder (< 4 μm) compared with larger sized fractions of the same powder (< 45 μm). Despite similar chemical compositions, the predominating structure of the smallest particle size fraction was ferritic (i.e., has ferromagnetic properties) whereas the larger sized particle fractions and massive 316 L revealed an expected austenitic and non-magnetic structure. From these findings, it follows that direct magnetic separation can be applied to separate very fine sized particles. These structural differences explain previously observed dissimilarities from corrosion and metal release perspectives.  相似文献   

20.
In this paper, we aim to optimize welding parameters namely welding current and time in resistance spot welding (RSW) of the austenitic stainless steel sheets grade AISI 316L. Afterward, effect of optimum welding parameters on the resistance spot welding properties and microstructure of AISI 316L austenitic stainless steel sheets has been investigated. Effect of welding current at constant welding time was considered on the weld properties such as weld nugget size, tensile–shear load bearing capacity of welded materials, failure modes, failure energy, ductility, and microstructure of weld nuggets as well. Phase transformations that took place during weld thermal cycle were analyzed in more details including metallographic studies of welding of the austenitic stainless steels. Metallographic images, mechanical properties, electron microscopy photographs and micro-hardness measurements showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Backscattered electron scanning microscopic images (BE-SEM) showed various types of delta ferrite in weld nuggets. Three delta ferrite morphologies consist of skeletal, acicular and lathy delta ferrite morphologies formed in resistance spot welded regions as a result of non-equilibrium phases which can be attributed to the fast cooling rate in RSW process and consequently, prediction and explanation of the obtained morphologies based on Schaeffler, WRC-1992 and Pseudo-binary phase diagrams would be a difficult task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号