首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Al–Sc and Al–Sc–Zr alloys containing 0.05, 0.1 and 0.5 wt.% Sc and 0.15 wt.% Zr were investigated using optical microscopy, electron microscopy and X-ray diffraction. The phase composition of the alloys and the morphology of precipitates that developed during solidification in the sand casting process and subsequent thermal treatment of the samples were studied. XRD analysis shows that the weight percentage of the Al3Sc/Al3(Sc, Zr) precipitates was significantly below 1% in all alloys except for the virgin Al0.5Sc0.15Zr alloy. In this alloy the precipitates were observed as primary dendritic particles. In the binary Al–Sc alloys, ageing at 470 °C for 24 h produced precipitates associated with dislocation networks, whereas the precipitates in the annealed Al–Sc–Zr alloys were free of interfacial dislocations except at the lowest content of Sc. Development of large incoherent precipitates during precipitation heat treatment reduced hardness of all the alloys studied. Growth of the Al3Sc/Al3(Sc, Zr) precipitates after heat treatment was less at low Sc content and in the presence of Zr. Increase in hardness was observed after heat treatment at 300 °C in all alloys. There is a small difference in hardness between binary and ternary alloys slow cooled after sand casting.  相似文献   

2.
Abstract

This paper studied the primary Al3(Sc,Zr) particles formed during solidification in three Al–Sc–Zr alloys with various Zr contents. It has been shown that the primary Al3(Sc,Zr) particles formed during solidification since the Sc and Zr concentrations are above the solid solubility limit in Al matrix. Scanning electron microscopy line scanning results indicated that the distributions of Sc, Zr and Al atoms in the primary Al3(Sc,Zr) particles differ a lot from those in the secondary Al3(Sc,Zr) particles formed during annealing. In the primary Al3(Sc,Zr) particles, both Sc and Zr contents are found from rim to the centre of the particles, with an increasing trend from the rim to the centre, while the Al content drops sharply on the rim of the particle and slightly from the rim to the centre.  相似文献   

3.
Impurity effects on the nucleation and growth of primary Al3(Sc,Zr) phase have been investigated in high purity Al alloys and commercial purity Al alloys, respectively. In the case of high purity Al alloys, primary Al3(Sc,Zr) phases were found to be pushed to grain boundaries ahead of the solidification front. Such type of primary Al3(Sc,Zr) phase did not contribute to the heterogeneous nucleation, and thereby the grain refinement of Al alloys. In the case of commercial purity Al alloys, the presence of Fe, Si, Cu, Mg, Ti, and other impurities significantly enhanced the heterogeneous nucleation of primary Al3(Sc,Zr) phase. Most primary Al3(Sc,Zr) phases were found to be located within the α-Al matrix, and kept an identical orientation relationship with the α-Al matrix. Furthermore, the presence of the impurities also changed the growth mode on the primary Al3(Sc,Zr) phase. In the case of commercial purity Al alloys, a peritectic to eutectic reaction was induced due to the presence of the impurities. A layered growth was observed leading to a narrow particle size distribution. In contrast, in the case of high purity Al alloys, a featureless structure was observed. This investigation demonstrates that impurities and their concentrations are important factors affecting the nucleation and growth of primary Al3(Sc,Zr) phases, and thereby for the successful grain refinement in Al-based alloys.  相似文献   

4.
Both the addition of 0.6% Sc and simultaneous addition of 0.2% Sc and 0.1% Zr exerted a remarkable effect on grain refinement of as-cast Al–Mg alloys, changing typical dendritic microstructure into fine equiaxed grains. Such effect was found to be related to the formation of primary particles, which acted as heterogeneous nucleation sites for α-Al matrix during solidification. Primary particles formed in Al–Mg–Sc–Zr alloy could be identified as the eutectic structure consisting of multilayer of ‘Al3(Sc,Zr)?+?α-Al?+?Al3(Sc,Zr)’, with a ‘cellular-dendritic’ mode of growth. In addition, an attractive comprehensive property of as-cast Al–5Mg alloy due to the addition of 0.2% Sc and 0.1% Zr was obtained.  相似文献   

5.
Trace amount (0.3?wt%) of scandium is added to Al–5.6Mg–0.7Mn alloy to form uniformly distributed Al3Sc precipitates for producing a fine-grained and stable microstructure at high temperature through cross-channel extrusion process. Superplasticity and hot workability of the Sc-containing Al–5.6Mg–0.7Mn alloy, after extrusion, are also examined. The result indicates that Al–5.6Mg–0.7Mn alloys with and without 0.3?wt% Sc after extrusion of six passes at 300°C, fine-grained structures were observed with grain sizes of 1–2?µm and improvement of mechanical properties. Furthermore, Al3Sc phase can effectively retard recrystallization to increase the thermal stability and remain equiaxed. The elongation of Al–5.6Mg–0.7Mn alloy with Sc addition to failure is extended to 873% maximum at high temperature of 450°C at strain rate of 1?×?10?1?s?1after six passes in the CCEP.  相似文献   

6.
Constitution and age hardening of Al-Sc alloys   总被引:9,自引:0,他引:9  
Aluminium-rich alloys from the Al-Sc system were examined to determine the form of the equilibrium phase diagram and to obtain information on age hardening of chill cast alloys. Samples containing up to 8.75wt% Sc were examined using thermal analysis and optical microscopy. This work indicated a eutectic type of phase diagram with a eutectic temperature of about 665° C and a eutectic composition of about 0.6wt% Sc. The scandium-rich primary phase was found to be ScAl3 which is f c c with a lattice parameter of 0.4105nm. Chill cast samples of a 1 wt% Sc alloy were examined for their age hardening behaviour over the temperature range of 225 to 360° C. A maximum hardness of 77 VHN was obtained after ageing at 250° C for 3 days. This hardness was retained after ageing for a total of at least 12 days. The hardening precipitates were ScAl3 which were observed to form via a discontinuous precipitation mechanism. The ScAl3 precipitates were observed to have a parallel orientation relationship with the matrix.  相似文献   

7.
The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al6Mn- and/or Al6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al6Mn-phase precipitation.  相似文献   

8.
The improvement in strength of Al and Al-0.2Sc alloys through repetitive corrugation and straightening (RCS) was studied. The RCS was carried out using both single teeth as well as multiple teeth corrugative setup attached to a universal testing machine. The improvement in strength was obtained by measuring the hardness after processing. The rotation of sample by 90° between successive passes resulted in higher hardness values as compared to the simple bending and straightening. The increment in hardness obtained with same number of passes in the case of Al-0.2Sc alloy is more as compared to Al and is possibly due to blocking of dislocations that are introduced during deformation by Al3Sc precipitates.  相似文献   

9.
Du  Haiquan  Zhang  Shasha  Zhang  Bingyi  Tao  Xuewei  Yao  Zhengjun  Belov  Nikolay  van der Zwaag  Sybrand  Liu  Zili 《Journal of Materials Science》2021,56(28):16145-16157

Al-Mg alloys are normally prone to lose part of their yield and tensile strength at high temperatures due to insufficient thermal stability of the microstructure. Here, we present a Ca-modified Al–Mg–Sc alloy demonstrating high strength at elevated temperatures. The microstructure contains Al4Ca phases distributed as a network along the grain boundary and Al3(Sc,Zr) nano-particles dispersed within the grains. The microstructure evolution and age-hardening analysis indicate that the combination of an Al4Ca network and Sc-rich nano-particles leads to excellent thermal stability even upon aging at 300 °C. The tensile strength of the alloy for temperatures up to 250 °C is significantly improved by an aging treatment and is comparable with the commercial heat-resistant aluminum alloys, i.e., A356 and A319. At a high temperature of 300 °C, the tensile strength is superior to the above-mentioned commercial alloys, even more so when expressed as the specific strength due to the low density of Ca-modified Al–Mg–Sc alloy. The excellent high-temperature strength results from a synergistic effect of solid solution strengthening, grain boundary strengthening and nanoparticle order strengthening.

  相似文献   

10.
AA5xxx aluminium alloys are used in the automotive and packaging industries owing to their high strength and ductility. The addition of Sc and Zr to these alloys has shown promise for improving high temperature stability and therefore broadening the range of applications. This high temperature stability is due to the formation of fine Al3(Sc, Zr) precipitates during aging. In this work, two twin-belt cast Al–3%Mg alloys, one with 0·4% Sc and the other without Sc, were annealed at 300 and 400°C. Hardness, tensile yield stress and electrical resistivity measurements were used to examine the evolution of microstructure and strength of the alloys. These results were then utilised to develop a yield stress–precipitation model to describe simultaneous precipitation hardening and recovery.  相似文献   

11.
Field-ion microscopy connected with the successive field-evaporation technique and the atom-probe analysis has been applied to studying precipitation processes, especially the early stage of precipitation, in age-hardenable aluminium alloys, such as Al-Cu, Al-Ag and Al-Sc alloys. In Al-Cu alloys, coexistence of the single-layer G.P.(1) zones and the multilayer G.P.(1) zones has been confirmed and the difference between G.P.(1) zones and G.P.(2) zones has been clearly recognized. In Al-Ag alloys, the octahedral shape of η-G.P. zones has been confirmed. In Al-Sc alloys, it has been found that the equilibrium Al3Sc phase particles precipitate homogeneously from the beginning without any preprecipitation stage and coherency between the precipitate and the matrix is maintained even in an alloy aged at relatively higher temperature for prolonged periods of time.  相似文献   

12.
Influence of Sc content on microstructure and stress corrosion cracking behavior of medium strength Al–Zn–Mg alloy have been investigated by optical microscopy, scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy and slow strain rate test. The results indicate that the addition of Sc results in the formation of the quaternary coherent Al_3(Sc, Zr, Ti) dispersoids during homogenization treatment, which will inhibit the dynamic recrystallization behavior. The number density of Al_3(Sc, Zr, Ti) particles increases with the increase of Sc content, and thus the recrystallization fraction of hot-extruded alloy is reduced and the peak strength in two-stage artificial aging sample is enhanced. At the same time, the wide of precipitation free zone is reduced, and the content of Zn and Mg in grain boundary particles and precipitation free zone is increased with the increase of Sc content. In peak-aged state, the 0.06 wt% Sc added alloy shows the better stress corrosion cracking resistance than the Sc-free alloy because of the reduction of recrystallization fraction and the interrupted distribution of grain boundary precipitates along grain boundary. However, the further addition of Sc to 0.11 wt% will result in the deterioration of stress corrosion cracking resistance due to the increase of electrochemical activity of grain boundary particles and precipitation free zone as well as hydrogen embrittlement.  相似文献   

13.
ABSTRACT

The influence of minor Sc addition on the low-cycle fatigue (LCF) properties of hot-extruded Al-Zn-Mg-Cu-Zr alloy with T6 state was investigated through performing the LCF tests at room temperature and air environment. The results indicate that two alloys show cyclic stabilisation, cyclic hardening and cyclic softening during fatigue deformation. The addition of Sc can significantly enhance the cyclic stress amplitude of the alloy. Al-Zn-Mg-Cu-Zr-Sc alloy shows higher fatigue lives at lower strain amplitudes, while has lower fatigue lives at higher strain amplitudes. For the two alloys, the density and movability of dislocations are related to the change of cyclic stress amplitudes. The existence of Al3(Sc,Zr) phase can inhibit the appearance of cyclic softening phenomenon in the Al-Zn-Mg-Cu-Zr-Sc alloy.  相似文献   

14.
Dilute Al-0.06 at.% Sc alloys with microalloying additions of 50 at. ppm of ytterbium (Yb) or gadolinium (Gd) are studied with 3D local-electrode atom-probe (LEAP) tomography for different aging times at 300 °C. Peak-aged alloys exhibit Al3(Sc1−x Yb x ) or Al3(Sc1−x Gd x ) precipitates (L12 structure) with a higher number density (and therefore higher peak hardness) than a binary Al-0.06 at.% Sc alloy. The Al–Sc–Gd alloy exhibits a higher number density of precipitates with a smaller average radius than the Al–Sc–Yb alloy, leading to a higher hardness. In the Al–Sc–Gd alloy, only a small amount of the Sc is replaced by Gd in the Al3(Sc1−x Gd x ) precipitates, where x = 0.08. By contrast, the hardness incubation time is significantly shorter in the Al–Sc–Yb alloy, due to the formation of Yb-rich Al3(Yb1−x Sc x ) precipitates to which Sc subsequently diffuses, eventually forming Sc-rich Al3(Sc1−x Yb x ) precipitates. For both alloys, the precipitate radii are found to be almost constant to an aging time of 24 h, although the concentration and distribution of the RE elements in the precipitates continues to evolve temporally. Similar to microhardness at ambient temperature, the creep resistance at 300 °C is significantly improved by RE microalloying of the binary Al-0.06 at.% Sc alloy.  相似文献   

15.
The effect of the addition of silicon (up to 4 wt%), magnesium (up to 7.25 wt%), cobalt (up to 0.8 wt%) and iron (up to 1.5 wt%) on the microstructure of as-solidified Al-3 wt% Li powders, produced by centrifugal atomization in a helium atmosphere, has been studied by means of optical, scanning electron and transmission electron microscopy. The results show that the microstructure changes from dendritic in the case of Al-Li and Al-Li-Mg alloys to a eutectic (Al + AlLiSi) mixture in the Al-Li-Si alloy to a cellular structure for the Al-Li-Co alloy, and results in the direct nucleation of coarse intermetallic Al6 Fe from the melt followed by subsequent growth in the case of Al-Li-Fe alloy.  相似文献   

16.
The FFC Cambridge process is a direct electrodeoxidation process used to reduce metal oxides for metals or alloys in molten salts.Al-Sc compound oxides are used as a precursor which formed upon blending and sintering Al2O3,Sc2O3 and Al powders and are successfully reduced by using the FFC Cambridge process at 973 K with a constant cell voltage of-3.2 V.This method is applied to the preparation of fine Al3Sc particles, which can give another new view for aluminum industry.  相似文献   

17.
The effect of nickel on the microstructure and mechanical properties of a die-cast Al–Mg–Si–Mn alloy has been investigated. The results show that the presence of Ni in the alloy promotes the formation of Ni-rich intermetallics. These occur consistently during solidification in the die-cast Al–Mg–Si–Mn alloy across different levels of Ni content. The Ni-rich intermetallics exhibit dendritic morphology during the primary solidification and lamellar morphology during the eutectic solidification stage. Ni was found to be always associated with iron forming AlFeMnSiNi intermetallics, and no Al3Ni intermetallic was observed when Ni concentrations were up to 2.06 wt% in the alloy. Although with different morphologies, the Ni-rich intermetallics were identified as the same AlFeMnSiNi phase bearing a typical composition of Al[100–140](Fe,Mn)[2–7]SiNi[4–9]. With increasing Ni content, the spacing of the α-Al–Mg2Si eutectic phase was enlarged in the Al–Mg–Si–Mn alloy. The addition of Ni to the alloy resulted in a slight increase in the yield strength, but a significant decrease in the elongation. The ultimate tensile strength (UTS) increased slightly from 300 to 320 MPa when a small amount (e.g. 0.16 wt%) of Ni was added to the alloy, but further increase of the Ni content resulted in a decrease of the UTS.  相似文献   

18.
The positive effects of Al3Sc phase on Al–Sc alloys can be promoted by adding to the third elements. The structure properties of Al3Sc when it dissolves the third elements are investigated by first-principles calculations. Special quasirandom structures are developed for the quasi-binary L12 structures. The calculations indicate that the elements of Ti, Zr, Y and Ta tend to substitute for Sc in Al3Sc, while Ni and Si prefer to substitute for Al. The present lattice parameters generally follow the Vegard’s law. The high solubility of Ti and Y in Al3Sc is revealed in the calculated quasi-binary phase diagram.  相似文献   

19.
Positron annihilation spectroscopy (PAS), comprising of both positron lifetime and coincidence Doppler broadening measurements, has been employed for studying the phase decomposition behaviour of scandium doped Al–6Mg alloys. Micro structural and age hardening studies have also been conducted to substantiate the explanation of the results of PAS. Samples with scandium concentration ranging from 0 to 0.6 wt.% have been studied. The measured positron lifetimes of undoped alloy reveal that GP zones are absent in the as-prepared Al–6Mg alloy. The observed positron lifetimes and the results of coincidence Doppler broadening measurements largely stem from the entrap of positrons at the interface between aluminium rich primary dendrites and the magnesium enriched interdendritic eutectic mixture of Mg5Al8 (β) and the primary solid solution of aluminium (α). The study also provides evidence of the formation of scandium vacancy complexes in Al–6Mg alloys doped with scandium upto a concentration of 0.2 wt.%. However such complex formation ceases to continue beyond 0.2 wt.% Sc; instead, the formation of fine coherent precipitates of Al3Sc is recorded in the as prepared alloy containing 0.6 wt.% scandium. The positron annihilation studies coupled with CDBS have also corroborated with the fact that the fine coherent precipitates of Al3Sc are formed upon annealing the Al–6Mg alloys doped with scandium of concentration 0.2 wt.% and above. Transmission electron microscopic studies have provided good evidence of precipitate formation in annealed Al–6Mg–Sc alloys. Elevated temperature annealing leads to dissociation of the scandium-vacancy complexes, thereby leading to the enhancement of the mobility of magnesium atoms. This has facilitated fresh nucleation and growth of Mg5Al8 precipitates in the above alloys at 673 K.  相似文献   

20.
Abstract

The purpose of the present work is to compare the segregation behaviour of Ti solute in low solute alloys, such as nominally pure Al, and high solute alloys typical of Al–Si casting alloys. Microprobe measurements of Ti segregation within grains show that, under the solidification conditions employed, the measured partition coefficient of Ti in pure Al is 6.7 compared with the phase diagram prediction of ~7.5. Similar measurements in an Al–7Si–0.3Mg alloy resulted in a partition coefficient of 3.2. Based on the measured partition coefficients, this translates into a reduction in the growth restriction factor (a measure of the segregating power of solute elements) from 8.75 K in pure Al to 3.36 K in Al–7Si–0.3Mg with an addition of 0.05 wt-%Ti. This may explain why Ti in solution is a less effective grain refiner in casting alloys than in low solute content wrought alloys. In addition, the measured Ti segregation profiles were compared with predicted profiles based on the Scheil or similar solidification relationships. It was found that the predictions of the Scheil equation produced a good fit with the measured Ti segregation profiles once it was adapted for the geometrical nature of dendritic solidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号