首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A Yb2O3-SiO2 doped silicon nitride ceramic, prepared such that the composition was placed directly on the Yb4Si2O7N2-Si3N4 tie line, was hot pressed sintered. The compressive creep behaviour of the sintered Yb4Si2O7N2-Si3N4 material was examined at 1400, 1450 and 1500°C under a stress range of 250-400 MPa in a nitorgen atmosphere. The sintered material exhibited high resistance to creep. The stress exponents were found to be ~1.9 at 1400°C, ~2.1 at 1450°C and ~2.1 at 1500°C. The activation energy obtained was 510 ± 25 kJ mol-1. The values of the stress exponents and the activation energy suggest a cavitational process, accommodated by grain boundary sliding, viscous flow and solution-reprecipitation, as the most probable dominant creep mechanism.  相似文献   

2.
In this study, γ-TiAl-based alloy with chemical composition of Ti–45Al–5Nb (in at.-%) fabricated by powder metallurgy method was crept at 700°C under 200–500?MPa. The creep properties and the microstructure after creep tests were investigated. The results showed that the γ-TiAl-based alloy was composed of equiaxed γ-TiAl grains and α 2-Ti3Al grains with average sizes of 1.4 and 0.5?μm, respectively. The creep resistance deteriorated generally with increased applied stresses. The typical intergranular fracture characteristics were observed though the grains were small. The calculated stress exponent and activation energy revealed the main creep mechanism of grain boundary sliding. Furthermore, twinning and dynamic recrystallisation also led to the creep deformation.  相似文献   

3.
The microstructure and basic mechanical properties, as hardness, fracture toughness, fracture strength and subcritical crack growth at room temperature were investigated and creep behavior at high temperatures was established. The presence of SiC particles refined the microstructure of Si3N4 grains in the Si3N4 + SiC nanocomposite. Higher hardness values resulted from introducing SiC nanoparticles into the material. A lower fracture toughness of the nanocomposite is associated with its finer microstructure; crack bridging mechanisms are not so effective as in the case of monolithic Si3N4. The strength value of the monolithic Si3N4 is higher than the characteristic strength of nanocomposites. Fractographic analysis of the fracture surface revealed that a failure started principally from an internal flaw in the form of cluster of free carbon, and on large SiC grains which degraded strength of the nanocomposite. The creep resistance of nanocomposite is significantly higher when compared to the creep resistance of the monolithic material. Nanocomposite exhibited no creep deformation, creep cracks have not been detected even at a test at 1400 °C and a long loading time, therefore the creep is probably controlled mainly by diffusion. The intergranular SiC nanoparticles hinder the Si3N4 grain growth, interlock the neighboring Si3N4 grains and change the volume fraction, geometry and chemical composition of the grain boundary phase.  相似文献   

4.
In the presented work some properties of a recently developed Si3N4/SiC micro/nanocomposite have been investigated. The material was tested using a pin on disc configuration. Under unlubricated sliding conditions using Si3N4 pin at 50 % humidity, the friction coefficient was in the range of 0,6 ‐ 0,7. The reduction of humidity resulted in a lower coefficient of friction, in vacuum the coefficient of friction had a value of about 0,6. The wear resistance in vacuum was significantly lower then that in air. The wear patterns on the Si3N4+SiC disc revealed that mechanical fracture was the wear controlling mechanism. Creep tests were realized in four point bending configuration in the temperature interval 1200‐1400 °C at stresses 50,100 and 150 MPa and the minimal creep deformation rate was established for each stress level. The activation energy, established from the minimal creep deformation had a value of about 360 kJ/mol and the stress exponent values were in the range of 0.8‐1.28. From the achieved stress exponents it can be assumed that under the studied load/temperature conditions the diffusion creep was the most probable creep controlling mechanism.  相似文献   

5.
Evaluation of Si3N4 joints: bond strength and microstructure   总被引:2,自引:0,他引:2  
Joining of pressurelessly sintered silicon nitride ceramics was carried out using adhesive slurries in the system Y-Si-Al-O-N in a nitriding atmosphere. The effects of bonding parameters, such as joining temperature (1450–1650°C), applied pressure (0– MPa) and holding time (10–60 min), on the bond strength of joint were evaluated. A typical microstructure of the joint bonded with the optimum adhesive was investigated. The three point bend testing of joined samples with 3 × 4 × 36 mm3 in dimension was employed to study the bond strength of joints. The results show that an optimum joining process was achieved by holding at 1600°C for 30 min under an external pressure of 5 MPa and the maximum bond strength was 550 MPa, compared to 700 MPa of unbonded Si3N4 ceramic, using the adhesive having the Si3N4/(Y2O3 + SiO2 + Al2O3) ratio of 0.39. The good bond strength is attributed to the similarity in microstructure and chemical composition between joint zone and ceramic substrate. The fracture modes were classified into two types according to the values of bond strength. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

6.
The manufacturing of the Si3N4 reinforced biomorphic microcellular SiC composites for potential medical implants for bone substitutions with good biocompatibility and physicochemical properties was performed in a two step process. First, wood-derived porous Si/SiC ceramics with various porosities were produced by liquid silicon infiltration (LSI) at 1550 °C with static nitrogen atmosphere protection (0.1 MPa), followed by subsequent partial removing of the Si in vacuo at 1700 °C for different periods of time. Secondly, the final porous Si3N4 fiber/SiC composite was obtained by further chemical reaction of nitrogen with the infiltrated residual silicon at 1400 °C for 4 h under high concentration flowing nitrogen atmospheres (0.5 MPa). The bending strengths of the porous Si3N4 fiber/SiC composite at axial and radial direction were measured as 180.03 MPa and 90 MPa respectively. The improvement in bending strength was primarily attributed to grain pull-out and bridging enhanced by the elongated β-Si3N4 grains cross-linked in the depth of the pore channels. The TG analysis showed an obvious improvement in oxidation resistance of the nitride specimens.  相似文献   

7.
Relations between microstructure, phase transformations and creep resistance of austenitic Fe–Ni–Cr alloys are investigated. As-cast alloys with different silicon contents and an ex-service tube are submitted to laboratory agings to trigger specific phase transformations, and subsequently creep-tested at 950°C under stresses of 24–48?MPa. As-cast microstructures contain interdendritic chromium-rich M7C3 carbides with niobium-rich MC carbides. After aging at 950°C, primary M7C3 carbides transform into chromium-rich M23C6 carbides, associated to a loss in creep strength. The G phase present in the ex-service alloy is reversed into MC carbides by a heat treatment at 1100°C, associated to a slight decrease in creep resistance. Besides, the addition of silicon is highly detrimental to creep strength. Results can be used for alloy design.  相似文献   

8.
The tensile creep behavior of a N610™/LaPO4/Al2O3 composite was investigated at 1,100°C in laboratory air and in steam. The composite consists of a porous alumina matrix reinforced with Nextel 610 fibers woven in an eight-harness satin weave fabric and coated with monazite. The tensile stress-strain behavior was investigated and the tensile properties measured at 1,100°C. The addition of monazite coating resulted in ~33% improvement in ultimate tensile strength (UTS) at 1,100°C. Tensile creep behavior was examined for creep stresses in the 32–72 MPa range. Primary and secondary creep regimes were observed in all tests. Minimum creep rate was reached in all tests. In air, creep strains remained below 0.8% and creep strain rates approached 2 × 10−8 s−1. Creep run-out defined as 100 h at creep stress was achieved in all tests conducted in air. The presence of steam accelerated creep rates and significantly reduced creep lifetimes. In steam, creep strain reached 2.25%, and creep strain rate approached 2.6 × 10−6 s−1. In steam, creep run-out was not achieved. The retained strength and modulus of all specimens that achieved run-out were characterized. Comparison with results obtained for N610™/Al2O3 (control) specimens revealed that the use of the monazite coating resulted in considerable improvement in creep resistance at 1,100°C both in air and in steam. Composite microstructure, as well as damage and failure mechanisms were investigated.  相似文献   

9.
The relationship between the as-cast microstructure and mechanical properties of the Al-12Si-3.5Cu-2Ni-0.8Mg alloys produced by permanent mold casting (PMC) and high pressure die casting (HPDC) is investigated. The alloys in both PMC and HPDC consist of Al, Si, Al5Cu2Mg8Si6, Al3CuNi, and Al7Cu4Ni phase. However, the microstructure of the HPDC alloy is significantly refined. Compared to the PMC alloy, the ultimate tensile strength of the HPDC alloy is significantly increased from 244 MPa to 310 MPa, while the elongation shows a reverse trend at room temperature. At low stress and temperature range, slight variations of stress exponent and activation energy indicate that the minimum creep rate is controlled by the grain boundary creep. Then the minimum creep rate is higher for the specimen with the smaller grain size, where grain boundary creep is the dominant creep mechanism. At high stress region, the stress exponent for the PMC alloy and HPDC alloy is 5.18 and 3.07, respectively. The different stress exponents and activation energies measured at high stress and high temperature range indicates that the creep mechanism varies with the casting technologies.  相似文献   

10.
The purpose of this study was to investigate mechanical properties, microstructure and sintering behavior of ultrafine grained Ti5Si3-TiC composite synthesized by mechanically activated self-propagating high-temperature synthesis method. For this purpose, the composite was sintered at 1450?°C at constant pressure of 50?MPa and reached to 97% of theoretical density by spark plasma sintering technique. The XRD pattern of the sintered sample is composed of the same peaks as the synthesized sample which means that the composite is stable at high temperature. The microstructure analyses illustrate that the composite retained its fine microstructure during the sintering process. The results also show that the amount of C atoms in the structure of titanium silicide slightly increased during the sintering process. The Young’s modulus and nanohardness of the composite reached 281?±?15.5?GPa and 16.6?±?0.8?GPa, respectively. In addition, Vickers indentation test results show that the composite possesses hardness and fracture toughness of 13.2?±?0.6?GPa and 4.7?±?0.1?MPa.m1/2, respectively. Formation of microstructure with low microcracks and homogenous distribution of TiC through the matrix are responsible for relative high mechanical properties of the composite. The crack deflection is observed as the main toughening mechanism.  相似文献   

11.
《Materials Letters》2007,61(4-5):1015-1019
The indentation creep behavior of AE42 and 0.4–1.2 wt.% Ca-containing AE41 alloys was studied. The microstructure was analyzed by an optical microscope, XRD and SEM equipped EDS before and after indentation creep. The results indicate that the creep resistance of AE41 alloys is improved with the addition of Ca. The indentation creep resistance of Ca-containing AE41 alloys is better than that of AE42 at 150 °C and 175 °C. The microstructure analysis shows that the Al11Nd3 phase in AE42 is prone to decompose above 150 °C, which deteriorates its creep resistance behavior. Ca-containing AE41 alloys have good indentation creep resistance because of the formation of heat-resistant phase Al2Ca in the alloys.  相似文献   

12.
A method to manufacture unique interpenetrating 50 vol% nickel–chromium/alumina composites, namely NiCr8020/Al2O3/50pp, is reported. Key process is a high temperature squeeze casting procedure at temperatures above 1500 °C used to infiltrate alloy NiCr8020 into porous alumina preforms exhibiting a bimodal pore structure. Microstructure and mechanical properties of this new composite material are presented. Bending creep tests at 1000 and 1150 °C are performed. The obtained results are discussed in comparison to a nickel based superalloy. It is shown, that particle preform reinforcement is a promising method to improve creep resistance of nickel based alloys significantly. Due to its outstanding creep resistance, the composite material has a high potential for structural and tribological applications at high temperatures in oxidizing atmospheres.  相似文献   

13.
Sub-microstructured Ti5Si3/TiC composites were in-situ fabricated by through spark plasma sintering (SPS) technique using Ti and nanosized SiC powders without any additive. It was found that the composite could be sintered in a relatively short time (8 min at 1260°C) to 98.8% of theoretical density. After sintering, the phase constituents and microstructures of the samples were analyzed by X-ray diffraction (XRD) techniques and observed by scanning electron microscopy (SEM) and TEM. Fracture toughness at room temperature was also measured by indentation tests. The results showed that fracture toughness of Ti5Si3/TiC composite reached 4.2 ± 0.4 MPa.m1/2, which is higher than that of monolith Ti5Si3 (2.5 MPa.m1/2).  相似文献   

14.
Tensile and flexural creep tests of 20 vol % SiC whiskers reinforced Si3N4 composite processed by gas pressure sintering have been carried out in air in the temperature range of 1000–1300°C. The stress exponent for flexural creep is 16 at 1000°C. However, at 1200 and 1250°C the stress exponents for both tensile and flexural creep vary with increasing stress. In the low stress region, the activation energy for creep is 1000 kJ/mol. In the high stress region, it is 680 kJ/mol. The different creep mechanisms dominate in the low and high stress regions, respectively. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
The effect of particulate TiN additions (0–50 wt%) on creep behaviour of hot-pressed (5 wt%Y2O3 + 2 wt%Al2O3)-doped silicon nitride (HPSN)-based ceramics was studied. Creep was measured using a four-point bending fixture in air at 1100–1340 °C. At 1100 °C, very low creep rates of HPSN with 0–30 wt% TiN are observed at nominal stresses up to 160 MPa. At 1200 °C the creep rate is slightly higher, and at 1300 °C the creep rate is increased by three orders of magnitude compared to 1100 °C and rupture occurs after a few hours under creep conditions. It was established that the formation of a TiN skeleton could detrimentally affect the creep behaviour of HPSN. An increase in TiN content leads to higher creep rates and to shorter rupture times of the samples. Activation energies of 500–1000 kJ mol?1 in the temperature range of 1100–1340 °C at 100 MPa, and stress exponentsn?4 in the stress range 100–160 MPa at 1130–1200 °C were calculated. Possible creep mechanisms and the effect of oxidation on creep are discussed.  相似文献   

16.
Silicon nitride ceramics containing calcium aluminates as sintering aids have been prepared by hot pressing at 1650°C in a nitrogen atmosphere, and the effect of sintering aid content on their microstructure, phase composition, mechanical strength, and air oxidation resistance has been studied. The results demonstrate that the Si3N4 ceramic containing 10 wt % calcium aluminates has a uniform distribution of intergranular multicomponent oxide phases and consists of densely packed silicon nitride grains. Owing to this, it offers the maximum mechanical strength (850 MPa) and is stable to air oxidation up to 1300°C.  相似文献   

17.
The paper presents results of microstructural investigations of MgAl5Ca3Sr magnesium alloys in the as‐cast condition, after creep tests at 180 °C, and after heat treatment at 450 °C for 4.5 hours. The microstructure of MgAl5Ca3Sr alloy is composed of α‐Mg solid solution, irregular shaped (Mg,Al)2Ca phase with C36 crystal structure, bulky (Mg,Al)17(Sr,Ca)2 phase, fine lamellar Mg2Ca phase with C14 structure, needle‐shaped Al2Ca precipitates with the C15 crystal structure. The precipitation of the needle‐shaped Al2Ca phase in the α‐Mg grains and spheroidization of the C14 phase were found after heat treatment at 450 °C in argon atmosphere. The (Mg,Al)2Ca (C36) and (Mg,Al)17(Sr,Ca)2 phases seems to be stable at 450 °C, however, the increasing of aluminum content in C36 compound was observed suggesting the initial stage of C36 → C15 transformation. After creep deformation at 180 °C precipitates of the Al2Ca phase were found in α‐Mg phase. The intermetallic compounds are stable at 180 °C. The MgAl5Ca3Sr alloy exhibits good creep resistance up to 75 MPa. Tensile properties are comparable to those of Mg‐RE‐Zn–Zr alloys.  相似文献   

18.
Mo particles have been introduced into Ag–Cu–Ti brazing alloy for the joining of Si3N4 ceramic. Effect of brazing temperature on microstructure and mechanical properties of the joints were investigated. The result shows that a continuous reaction layer which is composed of TiN and Ti5Si3 was formed at the Si3N4/braze interface. The central part of the joint was composed of Ag-based solid solution, Cu-based solid solution, Mo particles, and Cu–Ti intermetallic compounds. By increasing the brazing temperature, both the thickness of the reaction layer and amount of Cu–Ti intermetallic compounds in the joint increased, being beneficial for the joint strength. Whereas, the reaction between Ti and Si3N4 ceramic proceeded excessively and more Cu–Ti intermetallic compounds were precipitated in the joint while elevating the brazing temperature to 950 °C, leading to deterioration of the bending strength. The maximal bending strength reached 429.4 MPa at 900 °C for 5 min when the Si3N4 ceramic was brazed with Ag–Cu–Ti + Mo composite filler.  相似文献   

19.
《Materials Letters》2004,58(3-4):308-311
A MoSi2-based composite reinforced with 20 vol.% Si3N4 rodlike crystals was fabricated by Spark Plasma Sintering (SPS) process. The microstructure and mechanical properties of the composite were investigated. Relative densities of the monolithic material and composite were above 95%. No reactions between Si3N4 and MoSi2 were observed. The composite containing Si3N4 rodlike crystal had higher hardness than monolithic MoSi2. The room-temperature flexural strength increased 60% compared to that of pure MoSi2. Especially the room-temperature fracture toughness of the composites was higher than that of MoSi2, from 3.6 MPa m1/2 for MoSi2 to 5.1 MPa m1/2 for composites with 20 vol.% Si3N4, respectively. Besides, the yield strength at elevated temperature and the low-temperature oxidation resistance for 20 vol.% Si3N4–MoSi2 composite exhibited considerable improvement over that of monolithic MoSi2. These results showed that Si3N4 rodlike crystal is an effective reinforcement for MoSi2.  相似文献   

20.
The Ni-based K417G superalloy is extensively applied as aeroengine components for its low cost and good mid-temperature (600–900 °C) properties. Since used in as-cast state, the comprehensive understanding on its mechanical properties and microstructure evolution is necessary. In the present research, the tensile, creep behavior and microstructure evolution of the as-cast K417G superalloy under different conditions were investigated. The results exhibit that tensile cracks tend to initiate at MC carbide and γ/γ′ eutectic structure and then propagate along grain boundary. As the temperature for tensile tests increases from 21 °C to 700 °C, the yield strength and ultimate tensile strength of K417G superalloy decreases slightly, while the elongation to failure decreases greatly because of the intermediate temperature embrittlement. When the temperature rises to 900 °C, the yield strength and ultimate tensile strength would decrease significantly. The creep deformation mechanism varies under different testing conditions. At 760 °C/645 MPa, the creep cracks initiate at MC carbides and γ/γ′ eutectic structures, and propagate transgranularly. While at 900 °C/315 MPa and 950 °C/235 MPa, the creep cracks initiate at grain boundary and propagate intergranularly. As the creep condition changes from 760 °C/645 MPa to 900 °C/315 MPa and 950 °C/235 MPa, the γ′ phase starts to raft, which reduces the creep deformation resistance and increases the steady-state deformation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号