首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microstructures and tensile properties of Mg-5Al-0.3Mn-xSm (x = 0, 1, 2 and 3 wt.%) alloys prepared by metal mould casting method were investigated. It was demonstrated that Mg-5Al-0.3Mn alloy was mainly composed of α-Mg and β-Mg17Al12 phases. However, the other two precipitates (Al11Sm3 and Al2Sm) were observed along grain boundaries in the alloys containing Sm. The amount of Al11Sm3 and Al2Sm precipitates was increased with the increment of Sm content. Meanwhile, volume fraction of β-Mg17Al12 phase was decreased. Moreover, the morphology of β-Mg17Al12 was altered from bulk bone-like shape to spherical one. Tensile results showed that Mg-5Al-0.3Mn-2Sm alloy exhibited the highest tensile properties both at room temperature and 150 °C. Compared with ultimate tensile strength (UTS), yield strength (YS) and elongation (?) of Mg-5Al-0.3Mn alloy, UTS, YS and ? of Mg-5Al-0.3Mn-2Sm alloy were enhanced by 30%, 45% and 35% at room temperature, and by 17%, 48% and 96% at 150 °C, respectively. The improvement of tensile properties was attributed to the decreased amount of β-Mg17Al12 and its refined morphology, and high thermal stable Al11Sm3 and Al2Sm precipitates which effectively prohibited dislocation movement and grain boundary sliding during deformation process.  相似文献   

2.
Mg-9Al-6Sn-3Zn (wt%) alloy was extruded and heat treated in T5 and T6 conditions, and its mechanical properties and microstructures were investigated. The extruded product can be slightly strengthened by the T5 treatment as a result of sparse and heterogeneous precipitation. Significant increase in strength is achieved by the T6 treatment, and this is mostly attributed to the formation of lamellar discontinuous Mg17Al12 precipitates. The segregation of Al and Zn at grain boundaries is responsible for the discontinuous Mg17Al12 nucleation. The T6-treated alloy exhibits a tensile yield strength of 341 MPa and an ultimate tensile strength of 409 MPa, together with an elongation to fracture of 4%.  相似文献   

3.
The effects of Pd on the microstructure and mechanical properties of Mg-6Al-1Zn alloys were investigated. Mg-6Al-1Zn-xPd (x = 0-6 wt.%) alloys were prepared using a permanent mould casting method. The microstructure of the as-cast alloys was characterized by the presence of Mg17Al12 and Al4Pd phases. The volume fraction of the Al4Pd phase was increased by the addition of 1-6 wt.%Pd but the volume fraction of the Mg17Al12 phases decreased. At room temperature, the tensile strength increased with increasing Pd addition up to 2 wt.%Pd, and the elongation to fracture decreased with a concomitant increase in the aggregation of the coarse Al4Pd phase. At 150 °C, the tensile strength increased with the addition of Pd. Therefore, the room and elevated temperature tensile properties of as-cast Mg-6Al-1Zn alloys can be improved by Pd addition.  相似文献   

4.
Tensile and low cyclic fatigue tests were used to assess the influence of micro-additions of Ti/V/Zr on the performance of Al–7Si–1Cu–0.5Mg (wt.%) alloys in the as-cast and T6 heat-treated conditions and their improvement was compared to the base alloy. The microstructure of the as-cast Al–7Si–1Cu–0.5Mg (wt.%) base and modified alloys consisted of α-Al, eutectic Si, and Cu, the Mg- and Fe-based phases Al2.1Cu, Al8.5Si2.4Cu, Al7.2Si8.3Cu2Mg6.9 and Al14Si7.1FeMg3.3. In addition, the micro-sized Ti/V/Zr-rich phases Al6.8Si1.4Ti, Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr and Al5.1Si35.4Ti1.6Zr5.7Fe were identified in the modified alloys. It was also noticed that increasing the content of Ti–V–Zr changed the morphology of Ti/V/Zr-rich phase. The tensile test results showed that the T6 heat-treated alloy modified with the addition of a higher content of Ti–V–Zr achieved the highest tensile strength of 343 MPa over the base alloy and alloys modified with additions of Ti, Ti–Zr and lower contents of Ti–V–Zr. The plastic strain energy density coefficient of the alloy modified with the addition of a higher content of Ti–V–Zr in the T6 temper condition was higher than the other studied alloys and reached 162 MJ m−3. The fatigue life of the same alloy was considerably longer than that of the other studied alloys, including the base alloy. The fractography revealed that all the studied alloys showed similar fracture behavior. The tensile cracks propagated through the eutectic Si and primary phases, exhibiting intergranular fracture along with some cleavage-like features of the plate-shaped Zr–Ti–V-rich intermetallics with the presence of fatigue striations on the latter, indicating their ductile nature. It is believed that the morphological changes of intermetallic precipitates containing Zr, Ti and V enhance the fatigue life of the alloy modified with additions of larger amounts of Ti–V–Zr in the T6 condition.  相似文献   

5.
The work presented in this study was carried out on Al–Si–Cu–Mg 319-type alloys to investigate the role of solution heat treatment on the dissolution of copper-containing phases (CuAl2 and Al5Mg8Cu2Si6) in 319-type alloys containing different Mg levels, to determine the optimum solution heat treatment with respect to the occurrence of incipient melting, in relation to the alloy properties. Two series of alloys were investigated: a series of experimental Al–7 wt% Si–3.5 wt% Cu alloys containing 0, 0.3, and 0.6 wt% Mg levels. The second series was based on industrial B319 alloy. The present results show that optimum combination of Mg and Sr in this study is 0.3 wt% Mg with 150 ppm Sr, viz. for the Y4S alloy. The corresponding tensile properties in the as-cast condition are 260 MPa (YS), 326 MPa (UTS), and 1.50% (%El), compared to 145 MPa (YS), 232 MPa (UTS), and 2.4% (%El) for the base alloy with no Mg. At 520 °C solution temperature, incipient melting of Al5Mg8Cu2Si6 phase and undissolved block-like Al2Cu takes place. At the same time, the Si particles become rounder. Therefore, the tensile properties of Mg-containing alloys are controlled by the combined effects of dissolution of Al2Cu, incipient melting of Al5Mg8Cu2Si6 phase and Al2Cu phase, as well as the Si particle characteristics.  相似文献   

6.
We have developed a new type of metallic composite material based on the binary eutectic Al-5.7 wt% Ni alloy. The structure of the initial alloys prepared by simple casting consists of strong, fine fibres of the Al3Ni phase and a ductile aluminium matrix. These alloys are then transformed into dispersion-hardened materials by isostatic extrusion in which the Al3Ni fibres are broken and dispersed in the ductile matrix. The materials thus prepared present a mechanical strength of the same order as the unidirectionally solidifed eutectic alloy: the tensile strength is nearly 300 MPa at room temperature. We observed in this work that the mechanical strength is remarkably increased by the addition of a small amount of copper or manganese: it attains about 400 MPa by the addition of 2 to 3wt% Cu, and more than 500 MPa by the addition of 3wt% Mn. These alloying elements also produce beneficial effects on the mechanical properties at high temperature.  相似文献   

7.
The as-cast Mg-5Li-3Al-xCa (x = 0, 0.5, 1, 1.5 wt.%) was prepared with vacuum induction melting furnace, then processed by hot extrusion. The microstructures and tensile properties were investigated. The results show that the grains of as-cast alloys were refined gradually with the increase of Ca content from 0.5 wt.% to 1 wt.%, while the Ca content increases to 1.5 wt.%, the grain size increases. The microstructures of investigated alloys were further refined after hot extrusion. Both as-cast and as-extruded Mg-5Li-3Al-0.5Ca alloys have the highest mechanical properties, which is mainly attributed to the grain refinement caused by the addition of Ca and the formation of strengthening phase, Al4Ca. When the addition of Ca is up to 1-1.5 wt.%, the tensile properties of alloys are worsened due to the excessive (Mg, Al)2Ca eutectic phase forming at grain boundary.  相似文献   

8.
The effects of Ca additions (0.5-2.0 wt.%) on the microstructure and the microhardness of an as-cast Mg-5.0 wt.% Al alloy have been investigated. The coarse microstructure of the base alloy can be refined through adding Ca. DSC and TEM results showed that, as Ca additions increased up to 1.5 wt.% Ca, the β-Mg17Al12 phase was completely replaced by a (Al, Mg)2Ca phase. The Vickers microhardness of the as-cast Mg-Al-Ca alloys increased with increasing Ca content. Tests on the Mg-5.0Al-2.0Ca (wt.%) alloy showed an indentation size effect, which was well described by Meyer's Law.  相似文献   

9.
Monotonic and cyclic tests were used to assess the influence of micro-additions of Ti, V and Zr on the deformation behavior of the Al–7Si–1Cu–0.5Mg (wt.%) alloy in as-cast and T6 heat treated conditions and to compare the results with alloys of similar chemistry described in the literature. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu, Mg and Fe based phases Al2.1Cu, Al8.5Si2.4Cu, Al7.2Si8.3Cu2Mg6.9 and Al14Si7.1FeMg3.3. In addition, the micro-size Zr–Ti–V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr and Al5.1Si35.4Ti1.6Zr5.7Fe were present in the as-cast state. During solution treatment, Cu based phases were completely dissolved, while the eutectic silicon, Fe- and Zr–Ti–V-rich intermetallics experienced only partial dissolution. The monotonic test results showed that the T6 heat treated alloy achieved a tensile strength of 343 MPa and a compressive strength of 418 MPa. Also, the cyclic yield stress of the studied alloy in the T6 temper condition was higher than the monotonic value and reached 335 MPa. The fatigue life of the studied alloy was substantially longer than that of the reference alloy with the same base but lower additions of V, Zr and Ti, reported in the literature. The fractography revealed the tensile crack propagation through the eutectic Si and primary phases, exhibiting intergranular fracture along with some cleavage-like features of the plate-shape Zr–Ti–V-rich intermetallics with a presence of fatigue striations on the latter, indicating their ductile nature. It is believed that the intermetallic precipitates containing Zr, Ti and V improve the fatigue life of the studied alloy in the T6 condition.  相似文献   

10.
Zn-Mn-Cu alloys with micro-alloying of Mn and Cu in Zn are developed as potential biodegradable metals. Although the as-cast alloys are very brittle, their ductilities are significantly improved through hot rolling. Among the as-cast and the as-hot-rolled alloys, as-hot-rolled Zn-0.35 Mn-0.41 Cu alloy has the best comprehensive property. It has yield strength of 198.4 ± 6.7 MPa, tensile strength of 292.4 ± 3.4 MPa,elongation of 29.6 ± 3.8% and corrosion rate of 0.050-0.062 mm a~(-1). A new ternary phase is characterized and determined to be MnCuZn18, which is embedded in MnZn13, resulting in a coarse cellular/dendritic MnZn13-MnCuZn18 compound structure in Zn-0.75 Mn-0.40 Cu alloy. Such a coarse compound structure is detrimental for wrought alloy properties, which guides future design of Zn-Mn-Cu based alloys.The preliminary research indicates that Zn-Mn-Cu alloy system is a promising candidate for potential cardiovascular stent applications.  相似文献   

11.
观察Al-Fe合金的显微组织并测量其力学性能和导电性能,研究了Cu元素和形变热处理对其性能的影响。结果表明:在铸态Al-Fe-Cu合金组织中,Cu元素在基体内均匀分布,而Fe元素在晶界处偏析;挤压态的Al-0.7Fe-0.2Cu合金其性能最优:导电率为59.90%IACS,抗拉强度为108 MPa,硬度为31.2HV;随着退火温度的提高Al-0.7Fe-0.2Cu合金的抗拉强度急剧降低,在400℃退火时其抗拉强度最低(100 MPa),伸长率最高(31.3%);在250℃退火时导电率出现峰值(62.61%IACS)。在退火Al-0.7Cu-0.2Cu合金中有许多细小针状的θ(Al2Cu)相析出,并与位错交互缠结。随着退火温度的提高合金中的位错密度降低,晶粒细化。  相似文献   

12.
The relationship between the as-cast microstructure and mechanical properties of the Al-12Si-3.5Cu-2Ni-0.8Mg alloys produced by permanent mold casting (PMC) and high pressure die casting (HPDC) is investigated. The alloys in both PMC and HPDC consist of Al, Si, Al5Cu2Mg8Si6, Al3CuNi, and Al7Cu4Ni phase. However, the microstructure of the HPDC alloy is significantly refined. Compared to the PMC alloy, the ultimate tensile strength of the HPDC alloy is significantly increased from 244 MPa to 310 MPa, while the elongation shows a reverse trend at room temperature. At low stress and temperature range, slight variations of stress exponent and activation energy indicate that the minimum creep rate is controlled by the grain boundary creep. Then the minimum creep rate is higher for the specimen with the smaller grain size, where grain boundary creep is the dominant creep mechanism. At high stress region, the stress exponent for the PMC alloy and HPDC alloy is 5.18 and 3.07, respectively. The different stress exponents and activation energies measured at high stress and high temperature range indicates that the creep mechanism varies with the casting technologies.  相似文献   

13.
An Al-4.3 wt% Cu-2.0 wt% Mg alloy reinforced with 20 vol% reinforcing fibres was examined after a T7 heat treatment. The expected precipitate phase was equilibrium S′ (Al2CuMg), which was confirmed to form in the monolithic alloy. However when this Al-Cu-Mg alloy was squeeze-cast into a fibre preform and given an identical T7 heat treatment a number of other phases also nucleated; these included θ′ (Al2Cu), β′ (Mg2Si) and the cubic σ phase (Al5Cu6Mg2). These additional phases were determined to nucleate and grow rapidly during the water-quench following solution treatment. The existence of excess Si (approximately 0.5 wt%) in the matrix was determined to be responsible for nucleation of these additional phases. This extra Si entered the composite matrix during squeeze-casting through breakdown of an SiO2 layer which existed at the fibre interfaces. During quenching Si clusters rapidly form and provide nucleation sites for the σ and θ′ phases. The Si clusters apparently created a compressive strain in the matrix which attracted a high concentration of small Cu atoms to their interface. The σ phase nucleated in this high-Cu region since, on a localized scale, σ became the equilibrium phase. This type of nucleation process may also explain the enhanced precipitate nucleation which occasionally takes place in other alloy systems when trace amounts of certain elements are added.  相似文献   

14.
The microstructures, mechanical and corrosion properties of three extruded Mg-2Zn-0.46Y-xNd alloys (x = 0.0, 0.5, 1.0 wt%) were studied by optical microscopy, scanning electronic microscopy (SEM), electrochemical measurements and tensile tests. Microstructural observations indicated that Nd led to the uniformity and the variation of morphology of major second phase; tensile tests showed that Nd can improve the ductility at moderate amount (0.5 wt%) and will be detrimental up to 1.0%; Mg-2Zn-0.46Y-0.5Nd alloy exhibited excellent mechanical properties (σb, 269.0 MPa, σ0.2, 165.6 MPa and elongation, 24%); electrochemical tests revealed that Nd can enhance the corrosion resistance and Mg-2Zn-0.46Y-1.0Nd alloy had lowest corrosion current density, which was reasoned that the line-shape and rodlike NdZn2 phase might serve as corrosion barriers and the dissolved Nd can raise the electrode potential of the matrix.  相似文献   

15.
Two heat-resistant magnesium alloys AJC421 and Mg-2Nd were prepared. Both as-cast Mg-2Nd and AJC421 alloys exhibited good creep resistance in comparison with commonly used magnesium alloys. The improvement in creep properties through Nd addition to pure magnesium is attributed to both solid solution and precipitation hardening. The stress exponents of 4.5–5.5 and activation energies of 70.0–96.0 kJ/mol obtained from the as-cast Mg-2Nd alloy at low temperatures and low stresses indicate the five power law can be used for predicting the creep mechanism. The additions of alkaline earth elements Sr and Ca into Mg–Al alloys suppress the discontinuous precipitation of Mg17Al12 and form thermal-stable intermediate phases at grain boundaries, leading to effective restriction to grain boundary sliding and migration. However, the mechanism responsible for creep deformation of Mg–Al based alloys with Ca and Sr additions is not consistent with the results of microstructure observations performed on the alloys before and after creep tests.  相似文献   

16.
《材料科学技术学报》2019,35(7):1473-1478
The effect of second phases on the deformation mechanism of as-cast, solution-treated and aged Mg-7Al-2Sn (AT72) alloys during surface mechanical attrition treatment (SMAT) was investigated. Twinning was suppressed in the alloys containing second phases, which can provide nonuniform microstructures and phase boundaries as dislocation sources. Dynamic precipitation in AT72 alloys was studied during SMAT deformation as well. Mg2Sn particles can dynamically precipitate on the surface of all AT72 alloys during SMAT process. The quantity of Mg2Sn particles in the as-cast alloy, which is determined by the initial quantity of second phases, is larger than that of T4 and T6 alloys after the SMAT process.  相似文献   

17.
The evolution of microstructure and mechanical properties of Al-0.4Cu-0.14Si-0.05Mg-0.2Fe (wt.%) alloys, micro-alloyed with Zr, Ti and Sc, were investigated. The addition of 0.2%Zr to base alloy accelerates the precipitation of Si-rich nano-phase in α-Al matrix, which plays an important role in improving the mechanical properties of an alloy. The tensile strength increases from 102 MPa for the base alloy to 113 MPa for the Zr-modified alloy. Adding 0.2%Zr + 0.2%Ti to base alloy effectively refines α-Al grain size and accelerates the precipitation of Si and Cu elements, leading to heavy segregation at grain boundary. By further adding 0.2%Sc to Zr + Ti modified alloy, the segregation of Si and Cu elements is suppressed and more Si and Cu precipitates appeared in α-Al matrix. Accompanied with the formation of coherent Al3Sc phase, the tensile strength increases from 108 MPa for the Zr + Ti modified alloy to 152 MPa for the Sc-modified alloy. Due to excellent thermal stability of Al3Sc phase, the Sc-modified alloy exhibits obvious precipitation hardening behavior at 350 °C, and the tensile strength increases to 203 MPa after holding at 350 °C for 200 h.  相似文献   

18.
采用重力铸造法制备Mg-4Al-4Si-0.75Sb(AS44-0.75Sb)(质量分数/%,下同)镁合金,研究铸态合金的显微组织和室温力学性能。结果表明:铸态AS44-0.75Sb合金主要由α-Mg基体、β-Mg17Al12相、Mg2Si相和Mg3Sb2相组成;加入0.75Sb后形成高熔点的Mg3Sb2相,显著改善了Mg2Si相的形貌,使粗大的骨骼状Mg2Si转变为相对细小的汉字状Mg2Si。铸态合金的硬度HV为65.9,屈服强度为136.4MPa,抗拉强度为172.3MPa,伸长率为3.3%;拉伸断裂形式为准解理脆性断裂。  相似文献   

19.
Dispersoid hardening is a key factor in increasing the recrystallization resistance and mechanical strength of non-heat treatable aluminum-based alloys.Mn and Zr are the main elements that form dispersoids in commercial Al-based alloys.In this work,the annealing-induced precipitation behavior,the grain struc-ture,and the mechanical properties of Al-3.0Mg-1.1 Mn and Al-3.0Mg-1.1 Mn-0.25 Zr alloys were studied.The microstructure and the mechanical properties were significantly affected by annealing regimes after casting for both alloys.The research demonstrated a possibility to form high-density distributed quasicrystalline-structured I-phase precipitates with a mean size of 29 nm during low-temperature annealing of as-cast alloys.Fine manganese-bearing precipitates of Ⅰ-phase increased recrystallization resistance and significantly enhanced the mechanical strength of the alloys studied.The estimated strengthening effect owing to Ⅰ-phase precipitation was 150 MPa.Due to the formation of L12-structured Al3Zr dispersoids with a mean size of 5.7 nm,additional alloying with Zr increased yield strength by about 90 MPa.The L12-phase strengthening effect was estimated through the dislocation bypass looping and shearing mechanisms.  相似文献   

20.
The present work is performed on three alloys, namely Al-2.8Li-0.1Co, Al-2.8Li-0.4Co and Al-2.8Li-0.8Co (all wt%) produced by melt-spinning. Their microstructures in the as-melt-spun condition as well as following ageing at 473 K are studied by light and transmission electron microscopy where the phases present have been identified using X-ray diffractometry. The mechanical properties of these alloys are characterized by longitudinal tensile tests as well as by hardness measurements. The results reveal that increasing the cobalt content and hence the volume fraction of Al9Co2 dispersoids is very effective in increasing both yield and tensile strengths, in addition to a noticeable improvement in the ductility. Simple empirical equations are proposed to determine the yield strength in the as-melt-spun and aged conditions. The Young's modulus for the first alloy has been calculated from a bending test and is found to lie between 80 and 83 GPa depending on the ageing condition. Another advantage of increasing the Al9Co2 concentration appears in promoting high-energy transgranular fracture instead of the low-energy intergranular fracture usually observed in Al-Li alloys subjected to ageing. On leave of absence from the Central Metallurgical Research and Development Insitute, National Research Centre, Dokki, Cairo, Egypt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号