首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
The derivation, verification, and implication of the nonlinear dynamic and frequency response of electrostatic actuator due to the double frequency effect (DFE) were reported in this study. In particular, an extra mode called half mode was observed and measured in various studies. However, a complete in-depth discussion of the effect was not reported in the past. In the present study, a second-order dynamical equation was adapted firstly to model the dynamic and frequency response of electrostatic actuator where typical harmonic input signal with a dc bias was used. Secondly, by solving the equation, complex waveform in dynamic response and an extra half mode in frequency response due to the double frequency effect can be observed and discussed. To verify the simulated result, an electrostatic driving device was fabricated using PolyMUMPS© process. Note that in frequency response, when dc bias is equal to the amplitude of ac signal, simulated and experimental results indicated that the amplitude of half mode was one-fourth of first mode.  相似文献   

3.
基于钼酸铅晶体电致旋光效应的光学电压传感器   总被引:1,自引:0,他引:1  
研究了基于晶体电致旋光效应的光学电压传感器,电压传感元件采用了国产钼酸铅(PbMoO4)晶体。光学电压传感头仅由两块棱镜偏振器和一块钼酸铅晶体组成。实验结果表明此电压传感器具有较大的线性测量范围,例如对50-5000V工频电压测量的非线性误差低于0.2%;当测量100kHz的高频电压并利用锁相放大器检测传感信号时,最小可测量电压幅值为0.5V。此外,实验测量了所用钼酸铅晶体在635nm光波长及工频电压作用时的电致旋光系数,其数值为1.03pm/V。  相似文献   

4.
A new approach to the hardware implementation of artificial, electronic pulse-mode neural circuits is proposed and demonstrated based on the use of a novel heterostructure device that exhibits an S-type current-voltage characteristic. The new device consists of a multi-period quantum well structure with heavily doped n+ GaAs quantum wells and undoped AlGaAs barriers between an n+ GaAs cathode and p+ GaAs anode. When operated with an RC load, the device switches periodically between a low-conductance off state and a high-conductance on state generating a pulse-mode output. The operation is analogous to that of the axon hillock or trigger zone of the neuron, exhibiting a threshold behavior and a nonlinear dependence of the pulse frequency on the input voltage (mean membrane potential). Low-voltage and room-temperature operation are shown to be feasible.  相似文献   

5.
Capacitively shunted microelectromechanical (MEM) switches were designed, fabricated and tested in an earlier work. The switch is composed of a coplanar waveguide (CPW) structure with an Au bridge membrane suspended above a center conductor covered with a BaTiO3 dielectric. The membrane is actuated by electrostatic force acting between the center conductor of the CPW and the membrane when a voltage is applied. We have noted that pull-down voltages for MEM switches always demonstrate an extremely strong temperature dependence when actuated at cryogenic temperature. This paper improves the pull-down voltage prediction of MEM switches at cryogenic temperature using the mechanical properties of the bridge, thin film and substrate materials used in the switch. The theoretical and experimental results of the actuation voltages of these structures as a function of temperature are presented and compared.  相似文献   

6.
The feedback control problem for microelectromechanical (MEM) relays is complicated by a quadratic nonlinearity in the dynamic model. We show that this nonlinearity imposes constraints on the reference trajectories that can be tracked and on the global convergence rate of the tracking error. Using a dynamic model that is applicable to both electrostatic and electromagnetic MEM relays, we introduce a new class of nonlinear tracking controls. In particular, we use Lyapunov theory to construct a state feedback that yields uniform global asymptotic stability and arbitrarily fast local exponential convergence of the tracking error. We then show how our control can be redesigned with partial‐state feedback under the assumption that only the movable electrode position and the electrical state (i.e. charge or flux) are fed back. Finally, we utilize input‐to‐state stability theory to quantify the robustness of our state feedback controller to parametric uncertainties. Our simulation results illustrate the good stability and tracking performance of the proposed control. They also illustrate how to craft a reference trajectory that satisfies the aforementioned constraints while being compatible with a typical relay operation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Analyzing the dynamic response of electrostatic devices is problematic due to the complexity of the interactions between the electrostatic coupling effect, the fringing field effect and the nonlinear electrostatic force. To resolve this problem, this study presents an efficient computational scheme in which the nonlinear governing equation of the electrostatic device is obtained in accordance with Hamilton’s principle and is then solved using a hybrid differential transformation/finite difference method. The feasibility of the proposed approach is demonstrated by modeling the dynamic responses of two micro fixed-fixed beams with lengths of 250 and 350 μm, respectively. The numerical results show that the pull-in voltage reduces as the beam length increases due to a loss in the structural rigidity. Furthermore, it is shown that the present results for the pull-in voltage deviate by no more than 0.75% from those derived in the literature using a variety of different schemes. Overall, the results presented in this study demonstrate that the proposed hybrid method represents a computationally efficient and precise means of obtaining detailed insights into the nonlinear dynamic behavior of micro fixed-fixed beams and similar micro-electro-mechanical systems (MEMS)-based devices.  相似文献   

8.
This paper reports on fabrication and characterization of a new electrostatic microactuator that achieves out-of-plane multi-axis motion with a single silicon device layer. The multi-axis motion with the simple actuator design is possible by incorporating a three-dimensional (3-D) polydimethylsiloxane (PDMS) microstructure. This paper develops a new device processing method named "Soft-Lithographic Lift-Off and Grafting (SLLOG)" to fabricate the previously designed PDMS-on-silicon hybrid actuator structure. SLLOG is a low-temperature (less than 150/spl deg/C) process that allows replica molded PDMS microstructures to be integrated in silicon micromachined device patterns. The fabricated actuator is characterized using laser vibrometry. The experimental results demonstrate actuation motions achieved in three independent axes with fast dynamic response reaching a bandwidth of about 5 kHz. The fabricated PDMS-on-silicon actuator yields a vertical displacement up to 5 /spl mu/m and rotational motions with a 0.6-/spl deg/ tilting angle at a 40-V peak-to-peak ac actuation voltage.  相似文献   

9.
Frequency-dependent electrostatic actuation in microfluidic MEMS   总被引:1,自引:0,他引:1  
Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in "dry" MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.  相似文献   

10.
Design of a temperature-stable RF MEM capacitor   总被引:1,自引:0,他引:1  
This paper presents a novel temperature-compensated two-state microelectromechanical (MEM) capacitor. The principle to minimize temperature dependence is based on geometrical compensation and can be extended to other devices such as MEM varactors. The compensation structure eliminates the effect of intrinsic and thermal stress on device operation. This leads to a temperature-stable device without compromising the quality factor (Q) or the voltage behavior. The compensation structure increases the robustness of the devices, but does not require any modifications to the process. Measurement results verify that the OFF and ON capacitance change is less than 6% and the pull-in voltage is less than 5% when the temperature is varied from -30 to +70/spl deg/C.  相似文献   

11.
A variety of microelectromechanical (MEM) oscillators is governed by a version of the Mathieu equation that harbors both linear and cubic nonlinear time-varying stiffness terms. In this paper, chaotic behavior is predicted and shown to occur in this class of MEM device. Specifically, by using Melnikov's method, an inequality that describes the region of parameter space where chaos lives is derived. Numerical simulations are performed to show that chaos indeed occurs in this region of parameter space and to study the system's behavior for a variety of parameters. A MEM oscillator utilizing non interdigitated comb drives for actuation and stiffness tuning was designed and fabricated, which satisfies the inequality. Experimental results for this device that are consistent with results from numerical simulations are presented and convincingly show chaotic behavior.  相似文献   

12.
Capacitive micromachined ultrasonic transducers (CMUTs) with a perforated membrane have been fabricated and characterized in air. Two types of CMUT device have been fabricated having perforation ratio (area ratio of holes = AR) of 10% and 20%, and analyzed about electrical and mechanical characteristics. The perforation ratio (AR) of membrane substantially influences on the electrostatic force and mechanical restoring force of the device since it leads to the area variation of electrode and membrane, it subsequently influences on the sensitivity and frequency response of the CMUT device. The electrostatic force and mechanical restoring force were improved by decreasing the AR and increasing the DC bias voltage. The open-circuit sensitivity of a CMUT having AR 10% membrane, 8.45 μV/Pa, is larger than that of AR 20%, 4.07 μV/Pa at DC 15 V. Furthermore, the resonance behaviors were observed in the range of 60-80 kHz, and the resonance frequency could be changed by varying the applied DC voltage and AR.  相似文献   

13.
从采集的鼠笼异步电动机定子电流出发,建立了流方的概念,通过故障电流的自乘方放大并转移故障特征频率。根据瞬时功率的概念提出了基于改进瞬时功率法的电动机故障诊断方法,通过理论推导分别提取了转子断条故障和转子偏心故障在流方中的特征频率分量,有效地克服了转子断条故障特征频率容易被基频淹没的缺点,实现了对转子断条、偏心、复合等故障的辨别诊断。该方法与传统瞬时功率法相比,采集的数据量减半,避免了电压波动和采样误差对瞬时功率的影响。  相似文献   

14.
黄曼磊  魏志达  宋克明 《控制工程》2011,18(3):345-348,433
独立电力系统电压的稳定性主要取决于柴油发电机组的电压响应特性.同步发电机调压系统是一个非线性控制系统,为了分析系统的动态特性,首先建立同步发电机调压系统的非线性数学模型,然后以此为基础设计状态反馈H2/H∞调压器.将H2/H∞控制理论应用于柴油发电机组调压器的设计,把系统性能要求转化为标准H2/H∞控制问题,获得了柴油...  相似文献   

15.

This paper presents design and analysis of microelectromechanical system (MEMS) based displacement amplification mechanism actuated using thermal actuators with enhanced performance. The proposed model consists of chevron shaped thermal actuators, an amplification mechanism capable of amplifying displacement 20 times and an electrostatic comb drives for sensing displacements. When voltage is applied to thermal chevrons, displacement is produced which is then amplified 20 times. Steady state static thermal electrical analysis is performed under variable resistivity and voltage bias of 2 V. In-plane reaction forces of magnitude 194.2 and 150.91 µN along X and Y-axis, respectively, thus producing displacement of 0.11 and 2.22 µm along X and Y-axis, respectively. Time domain simulations of device are carried with constant electrical resistivity, variable voltage and convective boundary conditions. Modal analysis of the mechanism is carried out to predict the natural frequencies and associated mode shapes of mechanism during free vibrations. The desired mode is at frequency of 286.160 kHz. Dynamic simulations including direct integration-transient, transient modal and steady state modal analysis are performed on the device for time span of 0.0006 s, under application of 25 g and frequency range of 200–300 kHz. Simulation results prove the viability of the mechanism as an amplification device with enhanced voltage–stroke ratio.

  相似文献   

16.
提出并设计了一种用于硅基氮化镓(GaN)可调微镜的静电梳齿型微驱动器.利用有限元软件建立了该器件的几何结构模型,对器件的结构进行了仿真优化.此外,采用微机电系统(MEMS)加工工艺,制作出了用于硅基氮化镓可调微镜的梳齿型微驱动器,并对其驱动特性进行测试.测试结果表明:所制作的微驱动器的位移随着电压的变化呈二次方关系,与仿真结果基本一致.当加载驱动电压为200 V时,微驱动器的驱动位移可达到1.08 μm.  相似文献   

17.
A novel ac electrokinetic micropumping device based on ac electro-osmotic flow induced by asymmetrically capacitance/chemistry-modulated microelectrode arrays has been successfully developed and demonstrated. Asymmetric capacitance modulation is made of comb electrode arrays and parts of individual electrode surfaces are modulated/deposited with a $hbox{SiO}_{2}$ dielectric layer. This proposed design can be utilized to shift the optimal operation frequency of maximum velocity from tens of kilohertz to megahertz to minimize electrolytic bubble generation and enhance micropumping performance. The pumping velocity, described in this paper, is measured via the tracing of microbeads and is a function of applied potential, signal frequency, buffer concentration, and dielectric layer thickness. A maximum pumping velocity up to 290 $muhbox{m} cdot hbox{s}^{-1}$ in 5-mM buffer solution with the applied potential of 10 Vpp is observed in our prototype device, and the estimated maximum flow rate is up to 26.1 $muhbox{l} cdot hbox{h}^{-1}$. This is the first successful demonstration regarding bubble-free ac electrokinetic micropumping via such an asymmetrically capacitance-modulated electrode arrays. Design, simulation, microfabrication, experimental result, and theoretical model are described in this paper to characterize and exhibit the performance of proposed novel bubble-free ac electrokinetic micropump.$hfill$[2008-0030]   相似文献   

18.
This paper presents a generalized model that describes the behavior of micromachined electrostatic actuators in conducting liquids and provides a guideline for designing electrostatic actuators to operate in aqueous electrolytes such as biological media. The model predicts static actuator displacement as a function of device parameters and applied frequency and potential for the typical case of negligible double-layer impedance and dynamic response. Model results are compared to the experimentally measured displacement of electrostatic comb-drive and parallel-plate actuators and exhibit good qualitative agreement with experimental observations. The model is applied to show that the pull-in instability of a parallel-plate actuator is frequency dependent near the critical frequency for actuation and can be eliminated for any actuator design by tuning the applied frequency. In addition, the model is applied to establish a frequency-dependent theoretical upper bound on the voltage that can be applied across passivated electrodes without electrolysis.  相似文献   

19.
利用谐波平衡法对Buck变换器中的倍周期分岔进行了仿真研究,首先给出了连续控制模式下电压控制型Buck变换器的动力学模型,然后采用谐波平衡法进行分析,获得了产生倍周期分岔的充要条件,同时也得到了分岔的准确位置。基于这个分岔条件,可以设计一个前馈控制来避免倍周期分岔的发生。此控制法有利于输入电压工作范围的大幅度扩大,以及较好的输出电压校准。  相似文献   

20.
Closed-form solutions to the parallel plate problem have been derived for design of electrostatic devices that employ the parallel plate. With dimensionless height and force introduced to simplify the nonlinear parallel plate problem, a simple cubic equation implying behavior of the height of the movable plate corresponding an applied voltage has been derived and theoretically solved to provide closed-form solutions of the movable plate height, effective stiffness, resonant frequency, capacitance and their sensitivities to voltage. The theoretical height agreed well with experimental data obtained from a surface-micromachined parallel plate. When the applied voltage approaches the pull-in voltage, the height of the movable plate reaches 2/3 of the initial height, the effective stiffness and resonant frequency go to zero and the capacitance becomes 3/2 times the initial capacitance. These closed-form solutions can be used to analyze and design micro- and nano-devices employing electrostatic parallel plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号