首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow fields with tip leakage vortex in a small axial cooling fan   总被引:1,自引:1,他引:0  
In order to improve the fan characteristics, especially efficiency and noise level of a small axial cooling fan with a large tip clearance, the internal flow measurements with tip leakage vortex were carried out at fan rotor outlet us- ing an I-type hot-wire probe. The probe was set toward two directions, parallel and normal to the meridional plane of test fan, and the two directional velocity components were measured. From the result of fan test it was found that the test fan didn't have the unstable characteristic with a positive gradient on its pressure - flow-rate curve. From the results of velocity measurement it was observed that the tip leakage vortex exited at maximum efficiency flow-rate and large flow-rate conditions. However, at small flow-rate conditions the tip leakage vortex was not observed and it was found that the flow field were enlarged toward radial outwards  相似文献   

2.
Effects of the inlet guide vanes on the static characteristics, aerodynamic noise and internal flow characteristics of a small axial flow fan are studied in this work. The inlet guide vanes with different outlet angle are designed,which are mounted on the casing and located at the upstream of the impeller of the prototype fan. Both steady and unsteady flow simulations are performed. The steady flow is simulated by the calculations of Navier-Stokes equations coupled with RNG k-epsilon turbulence model, while the unsteady flow is computed with large eddy simulation. According to the theoretical analysis, the inlet guide vanes with outlet angle of 60° are regarded as the optimal inlet guide vanes. The static characteristic experiment is carried out in a standard test rig and the aerodynamic noise is tested in a semi-anechoic room. Then, performances of the fan with optimal inlet guide vanes are compared with those of the prototype fan. The results show that there is reasonable agreement between the simulation results and the experimental data. It is found that the static characteristics of small axial flow fan is improved obviously after installing the optimal inlet guide vanes. Meanwhile, the optimal inlet guide vanes have effect on reducing noise at the near field, but have little effect on the noise at the far field.  相似文献   

3.
To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-ε turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.  相似文献   

4.
To reduce the influence of adverse flow conditions at the fan hub and improve fan aerodynamic performance,a modification of conventional axial fan blades with numerical and experimental investigation is presented.Hollow blade root is manufactured near the hub.The numerical and experimental results show that hollow blade root has some effect on the static performance.Static pressure of the modified fan is generally the same with that of the datum fan,while,the efficiency curve of the modified fan has a different trend with that of the datum fan.The highest efficiency of the modified fan is 10% greater than that of the datum fan.The orthogonal experimental results of fan noise show that hollow blade root is a feasible method of reducing fan noise,and the maximum value of noise reduction is about 2 dB.The factors affecting the noise reduction of hollow blade root are in the order of importance as follows: hollow blade margin,hollow blade height and hollow blade width.The much smoother pressure distribution of the modified fan than that of the datum fan is the main mechanism of noise reduction of hollow blade root.The research results will provide the proof of the parameter optimization and the structure design for high performance and low noise small axial fans.  相似文献   

5.
Effects of the uneven circumferential blade space on static characteristics and aerodynamic noise of a small axial flow fan are studied in this work.The blade angle modulation is adopted to design a series of unequally spaced fans,which have different maximum of modulation angular displacement.The steady flow is simulated by the calculations of Navier-Stokes equations coupled with RNG k-epsilon turbulence model,while the unsteady flow is computed with large eddy simulation.According to theoretical analysis,a fan with a maximum of modulation angular displacement of 6° is regarded as the optimal unequally spaced fan.The experiment of static characteristic is carried out in a standard wind tunnel and the aerodynamic noise of both fans is tested in a semi-anechoic room.Then,performances of the optimal unequally spaced fan are compared with those of the prototype fan.The results show that there is reasonable agreement between the simulation results and the experimental data.It is found that the discrete noise of the optimal unequally spaced fan is lower than that of the prototype fan at the near field monitoring point.This can be explained that the total pressure fluctuation of the optimal unequally spaced fan is much more regular than that of the prototype fan.  相似文献   

6.
Small-sized axial fans are used as air cooler for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotational speed design is conducted,although,it causes the deterioration of efficiency and the increase of noise.Then,the adoption of contra-rotating rotors for the small-sized axial fan is proposed for the improvement of performance.In the case of contra-rotating rotors,it is necessary to design the rotor considering the unsteady flow condition of each front and rear rotor.In the present paper,the fan performance of the contra-rotating small-sized axial fan with 100mm diameter at a designed and a partial flow rates is shown,and the unsteady flow conditions at the inlet and the outlet of each front and rear rotor are clarified with unsteady numerical results.Furthermore,the relation between the performance and the unsteady flow condition of the contra-rotating small-sized axial fan is discussed and the methods to improve the performance are considered.  相似文献   

7.
Small size axial flow fans are used as a cooling component for computers,electronic equipment and other electronic components.With the increasing power of electrical equipment,the demand for lower noise and higher ventilation of cooling fan is also increasing.Traditional methods of improving ventilation by raising the fan’s rotation speed causes a decrease in efficiency and an increase in noise.In this paper,different structures of fans were simulated,and as a result,the counter-rotating fan can achieve higher pressure,efficiency and facilitate ventilation in a smaller space.Furthermore,some other conclusions are as follows:(1) Higher pressure rise can be obtained by a counter-rotating fan than by the two-stage rotor fan in the same axial length.Meanwhile,the counter-rotating fan has a broader work scope.(2) The main noise type of the counter-rotating fan is rotating noise;the small peak pulse caused by vortex noise mainly due to the eddy current produced by small eddies.(3) When the distance of counter-rotating fans is smaller than 2 times the chord,the greater distance the greater total pressure of the circum-averages and along the axial direction,the total pressure begin to decline until the distance is three times the chord,so there is an optimal distance between rotors.The simulation results are of important significance to the quantitative analysis and optimization design of the counter-rotating fan.  相似文献   

8.
Numerical investigations on 3D flow fields in an axial flow fan with and without an inlet box have been extensively conducted, focusing on the variation of fan performance caused by the internal flow fields and the velocity evenness at the exit of the inlet box. It is interesting to find that although the inlet box is well designed in accordance with basic design principles, there is a flow separation region in it. Furthermore, this flow separation and the resulting uneven velocity distribution at the exit lead to some decrease in the efficiency and an increase in the total pressure rise of the fan. This research shows that the inlet box needs further improvement and such a check on the flow fields is of value for the design of inlet boxes. __________ Translated from Journal of Engineering Thermophysics, 2007, 28 (Suppl.1): 161–164 [译自: 工程热物理学报]  相似文献   

9.
A piezoelectric fan is an attractive device to remove heat from microelectronic systems due to its low power consumption, minimal noise and compactness. In the present study, a piezoelectric fan is investigated to analyze the cooling capability for possible use in electronic devices. Both numerical and experimental analyses are carried out on the piezoelectric fan which was oriented horizontally. The FLUENT 6.3 software is used in the 2D simulation to predict the heat transfer coefficient and the flow fields using a dynamic mesh option to observe the fan swinging phenomena. Two heat sources in in-line arrangement are used in the experiment. The flow measurements are carried out at different piezoelectric fan heights by using a particle image velocimetry (PIV) system. The result shows that the piezofan height of hp/lp = 0.23 can reduce the temperature of the heat source surface as much as 68.9 °C. The numerical and experimental values of heat transfer coefficients are plotted and found in good agreement.  相似文献   

10.
This paper presents an experimental investigation of effects of a kind of streamwise-grooved blade on theperformance of an axial-flow fan.The flow field at 25% chord downstream from the trailing edge at hub wasmeasured using a 5-hole pressure probe at different mass-flow conditions.The fan performance of the grooveblades was compared with that of the smooth blades.The measurement results indicate that:(1)the non-smoothblades increase mass flow of the fan at the same throttle conditions except a near stall condition;(2)thenon-smooth blades reduce the relative total pressure loss in the rotor passage and increase the fan's total pressurerise at the test mass-flow conditions except the near stall condition;(3)Negative benefits are obtained at a nearstall condition when the smooth blades are replaced by the non-smooth ones.The fan mass flow decreases 0.9%while the total-pressure rise decreases 2.4% at the near stall condition.  相似文献   

11.
The flow at the exit from the runner blade of a centrifugal fan with forward curved blades (a sirocco fan) sometimes separates and becomes unstable. We have conducted many researches on the impeller shape of a sirocco fan, proper inlet and exit blade angles were considered to obtain optimum performance. In this paper, the casing shape were decided by changing the circumferential angle, magnifying angle and the width, 21 sorts of casings were used. Performance tests, inner flow velocity and pressure distributions were measured as well. Computational fluid dynamic calculations were also made and compared with the experimental results. Finally, the most suitable casing shape for best performance is considered.  相似文献   

12.
Small-sized axial fans are used as air coolers for electric equipments. But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices. Therefore, higher rotational speed design is conducted, although it causes the deterioration of the efficiency and the increase of noise. Then the adoption of contra-rotating rotors for the small-sized axial fan is proposed for the improvement of the performance. In the present paper, the performance and the internal flow condition of the small-sized axial fan are shown as a first step of the research for the contra-rotating small-sized axial fan and the important points to apply contra-rotating rotors to the small-sized axial fan are discussed. Furthermore, the numerical flow analysis is conducted to investigate the performance of the contra-rotating small-sized axial fan and internal flow conditions and pressure distributions are clarified and the effect of contra-rotating rotors is considered.  相似文献   

13.
An experimental investigation of effects of a kind of streamwise-grooved blade on the unsteady flow field at an exit of an axial-flow fan was performed. The flow field at 25% chord downstream from the trailing edge at hub was measured using a fast-response five-hole pressure probe at different mass-flow conditions. The unsteady flow of the grooved blades was compared with that of the smooth blades. The measurement results indicate that: (1) the grooved blades restrain the velocity fluctuation and the pressure fluctuation by modulating the blade boundary layers, which contributes to the flow loss reduction in the hub region and in the rotor wake region at the design condition; (2) the stream-wise grooves play an important role in restraining the radial migration in the blade boundary layer and abating the tip flow mixing, which contributes to the flow loss reduction in the tip region at the design condition; (3) at the near stall condition, the grooved surface can not reduce the flow loss, even increase the loss nearby when the separation happens in the blade boundary layer.  相似文献   

14.
The Digital Particle Image Velocimetry (DPIV) is an efficient method for measuring the internal flow field of a low-speed cooling fan. This paper studied the velocity field by means of PIV technology for a leading edge swept axial-flow fan without casing, and the tip vortex phenomenon was observed. Time-averaged velocity measurements were taken near the pressure surface, the suction surface and the tip of blade, etc. Moreover, the flow characteristics were visualized using numerical techniques. Experimental results showed that this tip vortex existed at the leading edge of the blade. The generating, developing and dissipating evolvement process of the tip vortex from the blade leading edge to downstream were discussed in detail. In addition, by comparing DPIV results and numerical results, a good agreement between them indicated a possibility to predict flow field using CFD tools. The experimental data provided in this paper are reliable for improving the aerodynamic characteristics of the open axial fan.  相似文献   

15.
The flow field of an axial fan in a direct air‐cooled condenser for a large power plant is modeled numerically. In order to improve the efficiency of heat exchange of the air‐cooled condenser, methods of increasing the rotational velocity of the fan and laying out the guide blade at the outlet of the fan are adopted. Results show that increasing the rotational velocity of the fan can effectively increase the flux of the fan, and can improve the efficiency of an air‐cooled condenser; laying out the guide blade at the fan outlet can ameliorate the flow field in an A‐flame. This causes the rotational kinetic energy to change into static pressure at the fan outlet, so the ability of the heat exchange of the air‐cooled condenser is improved. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21027  相似文献   

16.
This study is aimed at using blade 3-D optimization to control corner flows in the high through-flow fan/booster of a high bypass ratio commercial turbofan engine. Two kinds of blade 3-D optimization, end-bending and bow, are focused on. On account of the respective operation mode and environment, the approach to 3-D aerodynamic modeling of rotor blades is different from stator vanes. Based on the understanding of the mechanism of the corner flow and the consideration of intensity problem for rotors, this paper uses a variety of blade 3-D optimization approaches, such as loading distribution optimization, perturbation of departure angles and stacking-axis manipulation, which are suitable for rotors and stators respectively. The obtained 3-D blades and vanes can improve the corner flow features by end-bending and bow effects. The results of this study show that flows in corners of the fan/booster, such as the fan hub region, the tip and hub of the vanes of the booster, are very complex and dominated by 3-D effects. The secondary flows there are found to have a strong detrimental effect on the compressor performance. The effects of both end-bending and bow can improve the flow separation in corners, but the specific ways they work and application scope are somewhat different. Redesigning the blades via blade 3-D optimization to control the corner flow has effectively reduced the loss generation and improved the stall margin by a large amount.  相似文献   

17.
A multi-objective performance optimization method is proposed,and the problem that single structural parameters of small fan balance the optimization between the static characteristics and the aerodynamic noise is solved.In this method,three structural parameters are selected as the optimization variables.Besides,the static pressure efficiency and the aerodynamic noise of the fan are regarded as the multi-objective performance.Furthermore,the response surface method and the entropy method are used to establish the optimization function between the optimization variables and the multi-objective performances.Finally,the optimized model is found when the optimization function reaches its maximum value.Experimental data shows that the optimized model not only enhances the static characteristics of the fan but also obviously reduces the noise.The results of the study will provide some reference for the optimization of multi-objective performance of other types of rotating machinery.  相似文献   

18.
介绍了DF7型机车偶合器控制系统的组成、作用原理及常见故障概况,用程序设计中的流程图方法,对该系统常见故障的判别和处理进行了简述。应用流程图法,可以快速、准确地判别和处理故障,提高检修效率。  相似文献   

19.
For a direct dry cooling system, the turbine back pressure fluctuates with the meteorological conditions. Moreover, the operation of axial flow fans plays an important role in the cooling performance of air-cooled condensers (ACC). It is of significant use to study the operation strategies of axial flow fans under various ambient conditions. Based on typical 2 × 660 MW direct dry cooling power generating units, the ACC model coupled with the turbine thermodynamic characteristics is developed, by which the thermo-flow performances of the ACC are predicted in the dominant wind direction, and then the standard coal consumption is calculated. The results show that the increased ambient temperature and wind speed, or the reduced fan rotational speed leads to the high turbine back pressure. At the low ambient temperature and wind speed, the standard coal consumption rate of the unit can be reduced by reducing the speed of axial flow fans appropriately, with the maximum drop in coal consumption rate reached 0.734 g/(kWh) when the ambient temperature is 10°C without wind. If the wind speed exceeds 12 m/s or the ambient temperature reaches 25°C, 110% of the rated fan rotational speed is recommended.  相似文献   

20.
The power consumption of axial flow fans may account for more than 1% of the rated power output of the power generating unit, so it is of benefit to the energy efficiency of the power generating unit to propose an operation adjustment approach to axial flow fans. On the basis of representative 2 × 600 MW direct dry cooling generating units, a computational model of air‐side flow and heat transfer of an air‐cooled condenser (ACC) combined with exhaust steam condensation is developed, by which the airflow rate, inlet air temperature of ACCs, the power consumption of axial flow fans, turbine backpressure, and net power output of power generating units at various wind speeds and in various wind directions are obtained. The results show that the net power output in the presence of winds always decreases when the rational speeds of the first upwind row axial flow fans increase from the rated speed of 79 rpm by 10% to 86.9 rpm. However, the net power output will increase in various wind directions if the rational speeds of all the fans except the upwind first row fans increase to 86.9 rpm. This can contribute to the optimal operation of the ACC by rotational speed adjustment of axial flow fans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号