首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
周应和  刘洪波  邱涛  张琳  王鸣 《炭素》2006,(2):19-24
以沥青中间相炭微球为原料,采用KOH作活化剂制备高比表面积活性炭。考察了碱炭比、活化温度和保温时间等工艺因素对活性炭结构与碘吸附性能的影响。研究表明:活性炭的比表面积、总孔容与碘吸附性能随碱炭比、活化温度和保温时间的变化均呈先增大后减小的趋势,孔径分布随碱炭比的增大、活化温度的提高和保温时间的延长向孔径增大的方向位移。由于具有独特的层状结构,中间相炭微球在KOH活化成孔过程中表现出明显的各向异性,与垂直层面方向上相比,孔隙更容易在平行层面方向上形成和生长。  相似文献   

2.
活化条件对活性炭微球结构与性能的影响   总被引:3,自引:0,他引:3  
以煤焦油系中间相沥青微球为原料,KOH为活化剂,在不同活化条件下制备活性炭微球。考察了不同活化对活性炭微球结构和性能的影响。研究表明:随着KOH配比的增加,活性炭微球的微孔孔容变化较小,中孔孔容和总孔孔容分别增加到最大值后下降,比表面积增大到最大值后有轻微的降低。活化恒温时间对活性炭微球的活化收率和苯吸附值影响较小;而随着活化湿度的升高,活性炭微球总孔容和中孔孔容增大,比表面积先升高后降低。活性炭微球的苯吸附值随着总孔容的增大而增大。  相似文献   

3.
中间相沥青微球的活化   总被引:5,自引:0,他引:5  
用KOH为活化剂,在不同活化条件下对中间相青微球进行活化,制备出比表面积为3182m^2/g,总孔容为2.45mL/g,苯吸附值为1320mg/g的高比表面积活性炭微球。研究了了KOH配比、活性温度和活化时间对活性炭微球的收率、比表面积和苯吸附值的影响。研究表明:随着KOH配比量或活化温度的提高,活化收率下降,活性炭微球的比表面积和七吸附值升高到一定值后下降;延长活化时间使活化反应进行完全,活性炭微球的活化收率、比表面积和苯吸附值仅有轻微变化。  相似文献   

4.
以太西无烟煤为原料,KOH/NaOH为活化剂,在碱炭比为4:1,800 C活化1 h的条件下,制备高比表面积活性炭.采用N2吸附法对活性炭的比表面积、孔容和孔结构进行了表征,并考察了KOH/NaOH协同活化对活性炭比表面积及孔结构的影响.随着活化剂组成中KOH比例的增加,活性炭的比表面积、孔容、收率增大,孔径分布变窄,表观密度降低,KOH和NaOH作为活化剂有着不同的活化机理,合理地调节活化剂中两组分的比例,可以起到协同活化的作用,能对活性炭的比表面积、孔结构、收率及表观密度等物化性能进行有效的调控.  相似文献   

5.
以神东煤为原料,KOH为活化剂制备高比表面积活性炭,分别考察碱煤比、活化温度和活化时间对活性炭孔结构的影响,并用于CH4和H2的吸附与分离.结果发现,制得活性炭的比表面积和孔容随碱煤比和活化时间的增加分别呈增加和先增加后减小的趋势,但比表面积受活化温度影响不大,孔容随活化温度升高而增加;适合于CH4和H2分离的活性炭的最佳制备条件为:碱煤比为5,活化温度800℃,活化时间为90min.  相似文献   

6.
中间相炭微球的活化   总被引:13,自引:6,他引:7  
以煤焦油为原料用热解法制备的中间相炭微球由KOH活化,其活化条件为:碱炭比1:1~5:1,活化温度在850℃~1000℃.通过对活性发微球的形态、比表面积和孔结构的分析发现,在900℃下活化30min,碱炭比为5:1时,活性炭的比表面积最大可达3080m2/g.活化温度升高时,比表面积先增大而后减小,孔径分布向大的方向漂移.活化时间的影响与活化温度的影响相似.  相似文献   

7.
炭化条件对针状焦结构的影响   总被引:1,自引:0,他引:1  
以除去喹啉不溶物的中温煤沥青为原料,分别在不同的反应温度和保温时间下制备了中间相炭微球(MCMB);在磁场条件下制备了有序结构针状焦;通过扫描电镜(SEM)考察了不同反应条件下中间相炭微球和针状焦的形貌,讨论了中间相形成影响因素对针状焦结构的影响.结果表明,中间相形成阶段的反应温度、保温时间和体系黏度对针状焦的结构和性能具有重要影响,磁场对针状焦的流线型结构有促进作用.  相似文献   

8.
以废旧棉织物为原料,KOH为活化剂,利用化学活化法制备活性炭。采用XRD、SEM、元素分析仪、比表面积及孔径分析仪、FTIR等对所制备活性炭的结构与性能进行了分析与表征。结果表明:先炭化废旧棉织物,在m(炭化料)∶m(KOH)=1∶1,浸渍时间16 h,活化温度850℃,活化时间50 min的活化条件下,制备的活性炭比表面积为1 368.67 m~2/g,其中,微孔比表面积占BET比表面积的72.05%,总孔容为0.620 8 cm3/g,微孔孔容占总孔容的71.63%,微孔孔径主要分布在0.84~1.30 nm之间;活性炭呈中空纤维状,具有丰富的孔隙结构;碳质量分数高达90.43%;表面官能团主要为羧基、羰基、羟基等亲水性基团。废旧棉织物可作为制备活性炭的原料,所制活性炭性能优良。  相似文献   

9.
活性中间相炭微球的研究进展   总被引:1,自引:0,他引:1  
活性中间相炭微球是一种性能优异的新型高比表面积活性炭材料.概述了活性中间相炭微球的制备方法、活化反应机理及其应用进展.  相似文献   

10.
以太西无烟煤为前驱体,KOH为活化剂制备煤基活性炭,考察了预炭化时间对煤基活性炭孔结构及电化学性能的影响。结果表明,随着炭化时间的增加,活性炭吸附量先增大后减小,活性炭的比表面积、总孔容先增大后减小,中孔孔容逐渐减小;在预炭化温度800℃,炭化时间6 h,KOH与太西无烟煤质量比为2∶1,活化温度800℃的条件下可制备比表面积为1409 m2/g,总孔容为0.5284 cm3/g,中孔率为6.25%的煤基活性炭。电流密度为50 mA/g时,炭化6 h制备活性炭的比电容最大为127 F/g,电流密度增大至2500 mA/g时,比电容为84 F/g,容量保持率达到66.1%,经过1000次循环充放电后,其容量仍保持93.6%。  相似文献   

11.
采用沥青焦为原料,以KOH和NaOH活化剂制备出不同碱炭质量比(R)系列活性炭。利用X射线衍射(XRD)和X射线光电子能谱(XPS)表征出所制活性炭的石墨层结构和表面化学性质,并用氮气吸附和脱附等温线计算出BET比表面积、DFT孔径分布及孔容。实验结果表明,与NaOH活化剂相比,KOH活化剂所制活性炭石墨层破坏更明显,表面含氧官能团也明显增加。当R=5时,KOH活化剂所制样品BET比表面积高达2939m^2/g,孔容为1.43cm^2/g;而NaOH活化剂所制样品BET比表面积和孔容分别只有1098m^2/g、0.53cm^2/g。  相似文献   

12.
NaOH活化法制备煤基活性炭的研究   总被引:2,自引:0,他引:2  
以焦作无烟煤为原料,NaOH为活化剂,采用化学活化法制备煤基活性炭,分别考察了碱炭比、活化温度和活化时间等工艺参数对活性炭吸附性能和收率的影响;利用低温N2吸附法对活性炭的比表面积、总孔容及孔径分布进行了表征.结果表明,在碱炭比为4,活化温度为750℃和活化时间为1 h的条件下,可以制得比表面积为2 483 m2/g,总孔容为1.41 cm3/g,碘吸附值为2 530 mg/g,亚甲蓝吸附值为418 mg/g的煤基活性炭.  相似文献   

13.
高比表面积煤质活性炭的制备与活化机理   总被引:5,自引:0,他引:5       下载免费PDF全文
王秀芳  田勇  张会平 《化工学报》2009,60(3):733-737
以煤为原料,采用KOH活化法制备了高比表面积活性炭,分别考察了活化温度、浸渍比和活化时间等工艺参数对活性炭吸附性能的影响;测试了高比表面积活性炭在-196℃对N2的吸附等温线、比表面积和孔径分布。结果表明,当活化工艺参数为活化温度900℃,浸渍比4,活化时间1.5 h的条件下可以制得较好的高比表面积活性炭产品,其比表面积为3135 m2·g-1,孔容为1.72 cm3·g-1,碘吸附值为2657 mg·g-1;采用扫描电子显微镜观察了高比表面积活性炭的微观结构,采用气体分析仪检测了活化过程中的尾气成分,提出了高比表面积活性炭的活化机理。  相似文献   

14.
Effects of micropore development through varying the KOH/char ratio on the porous, electrochemical, electronic, and adsorptive properties for corncob-derived activated carbons (ACs) prepared by means of the KOH activation method were systematically compared. The pore properties of ACs, including BET surface area, total pore volume, micropore volume ratio, bulk density, and product yield based on the raw material were investigated to gain an understanding for the influence of KOH dosage on the pore development. Element analysis and temperature-programming desorption (TPD) were used to obtain the information of chemical composition and surface oxygen functional groups on ACs in order to propose the reaction mechanism of KOH activation. Based on the pore development, KOH-activated carbons can be classified into two groups: a combination of physical activation and chemical KOH etching at low KOH/char ratios (0.5-2) as well as chemically uniform etching at high KOH/char ratios (≥3.0). From the adsorption study for five organics with molecular weights varying from 129 to 466 g/mol, the specific adsorption capacity of ACs for organics is independent of their specific surface area. The specific capacitance of ACs reached a maximum as the KOH/char ratio was equal to 3, attributed to a compromise between the specific surface area and electronic resistance of ACs.  相似文献   

15.
Carbonaceous adsorbents with controllable pore sizes derived from carbonized pistachio shells (i.e., char) were prepared by the KOH activation and steam activation methods in this work. The pore properties including the BET surface area, pore volume, pore size distribution, and pore diameter of these activated carbons were characterized by the t-plot method based on N2 adsorption isotherms. Through varying the KOH/char ratios from 0.5 to 3, the KOH-activated carbons exhibited BET surface areas ranging from 731 to 1687 m2/g with a similar micropore content (80–92%). The carbons activated by steam at 830 °C for 2 h had a BET surface area of 821 m2/g with the micropore content of 42%. The micropore/total pore volume ratio (Vmicro/Vpore) and average pore size (Dpore) were independent of the KOH/char ratio, revealing that KOH activation is a powerful method in developing and controlling the number of micropores with a very similar pore size distribution. The adsorption equilibria and kinetics of methylene blue, basic brown 1, acid blue 74, 2,4-dichlorophenol, 4-chlorophenol, and phenol from water on all activated carbons at 30 °C were investigated to demonstrate the fact that adsorption of organics is not only dependent upon the BET surface area but is also determined by the relative size between pores and molecules. The adsorption isotherms were subjected to the model fitting according to Langmuir and Freudlich equations. By comparing the projected area of adsorbates, the surface coverage of phenols is about 3.6 times of that of dyes (based on unit gram of activated carbon). The Elovich equation was found to suitably describe the adsorption process of all KOH-activated carbons while the adsorption behavior on the steam-activated carbon was reasonably fitted with the intraparticle diffusion model.  相似文献   

16.
Activated carbons have been prepared from petroleum cokes by the combination of a chemical treatment with HClO4 or H2O2 and a chemical activation with KOH at a constant KOH/coke ratio of 3/1. The influence of different chemical treatments on the properties of the activated carbon precursors and final carbons activated with KOH was invested by using XRD, FTIR, and BET techniques. XRD results indicated that the value of interplanar distance d002 increased by chemical treatment and the disappearance of the peak corresponding to 0 0 2 faces correlated to high specific surface area. FTIR studies showed that chemical modification promoted the formation of surface oxygen functionalities. Significant effects on BET surface area, pore texture and iodine adsorption capacity were evidenced. The results show that chemical modification prior to activation dramatically increased the BET surface area and total pore volume of the resulting activated carbon. Modified petroleum coke based activated carbon with chemical activation had higher specific surface area (2336 m2/g) and better iodine adsorption value (1998 mg/g).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号